
Kuhnke Electronics
Programming Manual

E 417 GB

for KUAX 644, 657P, 680C, 680I
and KDT 680CT

19 September 1996 / 71.317

This manual is primarily intended for the use of the designing, the project
planning, and the developing engineers. It does not give any information
about delivery possibilities. Data is only given to describe the product and
must not be regarded as guaranteed properties in the legal sense. Any claims
for damages against us – on whatever legal grounds – are excluded except in
instances of deliberate intent or gross negligence on our part.
We reserve the rights for errors, omissions or modifications.
Reproduction even of extracts only with the editor's express and written prior
consent.

Contents - 1

 Table of contents

Table of contents

1. Introduction ... 1-1

1.1. Target systems .. 1-1

1.2. Programming aid KUBES ... 1-2

1.3. Working principle of CPU .. 1-3
1.3.1. Multitasking .. 1-3

1.4. Other programming aids ... 1-3
1.4.1. KUBES modules ... 1-4
1.4.2. Programming in the C high-level programming language 1-4
1.4.3. Networking software.. 1-4

2. Safety information .. 2-1

2.1. Target group .. 2-1

2.2. Reliability .. 2-1

2.3. Notes .. 2-2
2.3.1. Danger ... 2-2
2.3.2. Danger caused by high contact voltage 2-2
2.3.3 Important information / cross reference 2-2

3. Software modules .. 3-1

3.1. Organization module .. 3-4

3.2. Program module ... 3-5

3.3. Function module ... 3-6

3.4. Timer module ... 3-7

Contents - 2

Table of contents

3.5. Interrupt module ... 3-8
3.5.1. Call by error or failure messages ... 3-9
3.5.2. Call by interrupt-controlling modules (KUAX 680..) 3-10
3.5.3. Call by slave module (KUAX 657P) 3-11

3.6. Initialization module .. 3-12

3.7. Trigger module ... 3-13

3.8. KUBES module ... 3-14

3.9. Data module .. 3-15
3.9.1. Creating data modules ... 3-16
3.9.2. Transmitting data modules to the PLC 3-17
3.9.3. Getting data modules from the PLC .. 3-18
3.9.4. Exporting data modules .. 3-18
3.9.5. Importing data into a data module ... 3-18
3.9.6. Editing data modules online .. 3-18
3.9.7. Data processing ranges .. 3-19
3.9.8. Programming .. 3-20
3.9.8.1. Load commands ... 3-20
3.9.8.2. Store commands ... 3-21

4. Operands ... 4-1

4.1. Addressing .. 4-1

4.2. Symbolic specification of operands ... 4-3

4.3. Features of the operand groups .. 4-5
4.3.1. Digital inputs and outputs ... 4-5
4.3.2. Analog inputs and outputs .. 4-7
4.3.3. Bit markers and byte markers .. 4-8
4.3.4. Programmable timers ... 4-8
4.3.5. Software clock pulse .. 4-9
4.3.6. Counters ... 4-9
4.3.7. System error marker "ERR00.00" ... 4-9

Contents - 3

 Table of contents

5. Description of the commands........................... 5-1

5.1. Logical operations commands .. 5-2

5.2. Assignments and set commands ... 5-4

5.3. Arithmetic commands .. 5-5

5.4. Comparison commands ... 5-6

5.5. Shift and rotation commands .. 5-7

5.6. Manipulation of bytes and flags ... 5-8

5.7. Module calls .. 5-9

5.8. Jump commands ... 5-10

5.9. Copy commands .. 5-11

5.10. Binary<->BCD conversion .. 5-12

5.11. Programmable pulses (edge analysis) 5-13

5.12. Programmable timers .. 5-14

5.13. Programmable counters ... 5-15

5.14. Special commands .. 5-16

5.15. Commands of the initialization modules 5-17

5.16. Commands of the data modules ... 5-18

Contents - 4

Table of contents

6. Programming examples 6-1

6.1. Basic functions ... 6-2
6.1.1. AND .. 6-2
6.1.2. OR... 6-2
6.1.3. Negation at input .. 6-3
6.1.4. Negation at output .. 6-3
6.1.5. NAND ... 6-4
6.1.6. NOR .. 6-4
6.1.7. XO EXCLUSIVE-OR (non-equivalence) 6-5
6.1.8. XON EXCLUSIVE-NOR (equivalence) 6-5
6.1.9. Self-locking circuit .. 6-6

6.2. Memory functions ... 6-7
6.2.1. With reset dominance .. 6-7
6.2.2. With set dominance ... 6-7

6.3. Combinational circuits ... 6-8
6.3.1. OR-AND circuit ... 6-8
6.3.2. Parallel circuit to output .. 6-8
6.3.3. Network with one output .. 6-9
6.3.4. Network with outputs and markers ... 6-10

6.4. S-markers as AND/OR markers .. 6-11
6.4.1. Network with OR marker .. 6-11
6.4.2. Network with AND marker ... 6-12
6.4.3. Network with multiple use of the OR marker 6-13

6.5. Circuit conversion ... 6-14

6.6. Special circuits ... 6-15
6.6.1. Current surge relay .. 6-15
6.6.2. Reverse circuit (reverse contactor) with forced halt 6-16
6.6.3. Reverse circuit (reverse contactor) without forced halt 6-16

6.7. Pulse edge analysis ... 6-17
6.7.1. Programmable pulse with positive edge 6-17
6.7.2. Programmable pulse with negative edge 6-18
6.7.3. Pulse with positive signal .. 6-19
6.7.4. Pulse with negative signal ... 6-20

Contents - 5

 Table of contents

6.8. Software timers .. 6-21
6.8.1. Impulse at startup .. 6-21
6.8.2. Impulse of constant length ... 6-22
6.8.3. Raising delay .. 6-23
6.8.4. Falling delay ... 6-24
6.8.5. Impulse generator with pulse output 6-25
6.8.6. Flash generator with one timer .. 6-26
6.8.7. Flash generator with two timers ... 6-27

6.9. Programmable clock ... 6-28

6.10. Software counters ... 6-29

6.11. Programming an operational sequence 6-30
6.11.1 Step chain with step markers .. 6-30
6.11.2. Step chain with automatic status registration 6-32

6.12. Register circuits .. 6-35
6.12.1. 1bit shift register .. 6-35
6.12.2. 8bit shift register .. 6-36

6.13. Bit-to-byte transfer ... 6-37

6.14. Comparator circuits .. 6-38
6.14.1. 8bit comparator .. 6-38
6.14.1.1. Result of the comparison: logical evaluation....................... 6-38
6.14.1.2. Result of the comparison: evaluation with one jump 6-39
6.14.2. 16bit comparator .. 6-40
6.14.2.1. Result of the comparison: logical evaluation....................... 6-40
6.14.2.2. Result of the comparison: evaluation with one jump 6-40

6.15. Arithmetic functions ... 6-41
6.15.1. Binary 8bit adder .. 6-41
6.15.2. Binary 16bit adder .. 6-41
6.15.3. 8bit BCD adder ... 6-42
6.15.4. Binary 8bit subtractor ... 6-43
6.15.5. Binary 16bit subtractor ... 6-43
6.15.6. 8bit BCD subtractor ... 6-44
6.15.7. Binary 8bit multiplier .. 6-45
6.15.8. Binary 16bit multiplier .. 6-45

Contents - 6

Table of contents

6.15.9. Binary 8bit divider ... 6-46
6.15.10. Binary 16bit divider ... 6-46

6.16. Code converters ... 6-47
6.16.1. 8bit BCD-to-binary converter ... 6-47
6.16.2. 8bit binary-to-BCD converter ... 6-48
6.16.3. 16bit BCD-to-binary converter ... 6-49
6.16.4. 16bit binary-to-BCD converter ... 6-50
6.16.5. 3 decade BCD-to-binary converter 6-51
6.16.6. 3 decade binary-to-BCD converter 6-52
6.16.7. 10bit analog-to-binary conversion 6-52

6.17. Module programming ... 6-53

6.18. Data modules ... 6-59
6.18.1. Creating data modules offline ... 6-59
6.18.1.1. Creating a data file with the text editor 6-59
6.18.1.2. Creating the data module .. 6-60
6.18.1.3. Importing a data module ... 6-61
6.18.1.4. Testing the data module ... 6-62
6.18.2. Creating data modules online ... 6-64
6.18.2.1. Creating a data module .. 6-64
6.18.2.2. Editing data modules in the display address range 6-64
6.18.2.3. Loading data modules from the PLC 6-66
6.18.2.4. Exporting data modules ... 6-67

A. References to literature A-1

B. Measuring the cycle timeB-1

Index... Index-1

Sales & Service

 1 - 1

 Introduction

1. Introduction
1.1. Target systems

This instruction manual is concerned with the programming of
the user programs for the following PLC systems:

- KUAX 644 PC Control
is used as a slot card in the PC which communicates with de-
centralized I/Os and other controllers via its integrated
PROFIBUS interface;

- KUAX 657P Profi Control
modular design in a 19" rack, with configuration options of
up to 1024 I/Os, networkable via PROFIBUS due to
PROFIBUS module;

- KUAX 680C Compact Control
compact mini-controller equipped with inputs/outputs and
counters, can be extended by 4 modules for further I/Os and
functions if bus board exists;

- KDT 680CT Control Terminal
same as KUAX 680C but also designed as a operating termi-
nal;

- KUAX 680I Profi Control
modular mini-controller with slots for 4 or 8 modules,
equipped with an integrated PROFIBUS interface.

All above devices have the same processor and the same pro-
gramming aid is used for programming. This makes changing
systems a lot easier.

1 - 2

Introduction

1.2. Programming aid KUBES

KUBES is the programming tool. This is the Kuhnke User
Software that runs on commercially available PCs under MS-
Windows, the comfortable user interface.
Here you have the possibility of working in several windows to
use various KUBES functions at the same time, a feature that is
very convenient for commissioning and servicing:

Figure above: screenshot of a typical KUBES screen with the KUBES Main
Menu bar and the Module Editor visible as well as a dynamic (in this case:
graphic) display and logic diagram for monitoring the signal changes of se-

lected operands.

Please refer to the KUBES Beginner's Manual
E 327 GB, KUBES
to learn about the basic functionality of KUBES.
For further information please refer to the KUBES online help.

 1 - 3

 Introduction

1.3. Working principle of CPU

The purpose of the CPU is to control the processing of the pro-
gram. The microprocessor for the user program has two re-
source programs for its instructions:
- The monitor program

which contains the system properties of the controller. This
program is delivered with the device.

And the
- user program

which contains the programs for controlling the machine or
plant. These programs are written under the KUBES pro-
gramming tool. Additional C tasks can be embedded into
them.

1.3.1. Multitasking

The CPUs of the described controllers are based on so-called
multitasking operations. A high-priority time control function
ensures that all tasks have the same share of the overall
processing time. Every task has a maximum of 1 ms available
before it is interrupted to run the next task requesting process-
ing time. In the next cycle, the task is resumed at the same
point where it was interrupted in the previous cycle.
The following are typical tasks: user program, processing of
KUBES commands, dialog terminal communication activities,
C tasks (if implemented), PROFIBUS operations (if imple-
mented).

1.4. Other programming aids

Apart from writing user programs as described in this manual,
the system has other options for working out complex software
solutions for controllers.

1 - 4

Introduction

1.4.1. KUBES modules

Kuhnke provide a large number of KUBES modules as so-
called black box program packages. A good many of them are
delivered with KUBES. You can use them immediately after
installation of this user software.
Other modules can be obtained as separate program packages
on disk.

To learn more about KUBES modules please refer to the
folllowing instruction manual:

E 386 GB, KUBES Modules.

1.4.2. Programming in the C high-level programming language

Apart from the normal user program it is also possible to em-
bed program sections that were written in the C high-level pro-
gramming language. These programs are called C tasks. They
are normally written by Kuhnke developers as standard soft-
ware packages or customer-specific solutions for specific tasks.
Upon request, Kuhnke offer training programmes for users in-
terested in learning more about writing their own C tasks. A
prerequisite for participation is a solid knowledge of C lan-
guage programming.

1.4.3. Networking software

Controllers KUAX 644, 657P and 680I can be networked via
PROFIBUS. That means that they can be incorporated in a net-
work to communicate with other devices such as decentralized
I/Os (e.g. KUAX 680S), frequency converters, other controllers
etc.

PROFIBUS is not described in this manual. Please refer to the
following instruction manual:

E 365 GB, PROFIBUS

2 - 1

Reliability / Safety

2. Safety information

2.1. Target group

This instruction manual contains all information necessary for
the use of the described product (software, control device,
modules) according to instructions. It addresses the personnelpersonnelpersonnelpersonnelpersonnel
of the construction, project planning, service and commis-of the construction, project planning, service and commis-of the construction, project planning, service and commis-of the construction, project planning, service and commis-of the construction, project planning, service and commis-
sioning departmentssioning departmentssioning departmentssioning departmentssioning departments. For proper understanding and error-free
application of technical descriptions, instructions for use and
particularly of notes of danger and warning, extensive knowl-extensive knowl-extensive knowl-extensive knowl-extensive knowl-
edge of automation technologyedge of automation technologyedge of automation technologyedge of automation technologyedge of automation technology is compulsory.

2.2. Reliability

Reliability of Kuhnke controllers is brought to the highest pos-
sible standard by extensive and cost-effective means in their
design and manufacture.

These comprise:
software specification
rough and detailed software design
extensive documentation of all steps of development
testing of individual software modules
integration test of the software package
application test software ↔ controllers
integration into the KUHNKE Quality Assurance system
transferring the finished software to error free installation
disks.

Despite these measures, we cannot warrant a perfect function-
ing of our software, as there may, for example, be unexpected
hardware configurations that might cause unforeseeable mal-
functions.

2 - 2

Reliability / Safety

2.3. Notes

Please pay particular attention to the additional notes which we
have marked by symbols in this instruction manual:

2.3.1. Danger

This symbol warns you of dangers which may cause death,
(grievous) bodily harm or material damage if the described
precautions are not taken.

2.3.2. Danger caused by high contact voltage

This symbol warns you of dangers of death or (grievous) bodily
harm which may be caused by high contact voltage if the de-
scribed precautions are not taken.

2.3.3 Important information / cross reference

This symbol draws your attention to important additional infor-
mation concerning the use of the described product. It may also
indicate a cross reference to information to be found else-
where.

 3 - 1

Software modules

3. Software modules
The user program of the controllers is written as a module
structure. This gives you the opportunity to arrange the techno-
logical problem to be controlled as separate sub-tasks. The in-
dividual modules form a hierarchical system on a maximum of
5 levels. Modules on higher levels can call up modules on
lower ones.
A program with this kind of structure is very clear and consid-
erably helps understanding and reviewing finished programs.

Example of a module hierarchy:

There are also modules which are independent of this module
hierarchy. They are not called up by a command but by inter-
rupts. This group of modules consists of timer and interrupt
modules.

ORG.ORG <Name>.INI

<Name>.PRO

<Name>.PRO

<Name>.PRO

<Name>.KNK

<Name>.PRO
<Name>.PRO

<Name>.FUN

<Name>.PRO

<Name>.PRO

3 - 2

Modules

KUBES module overview:
The KUBES programming software has a feature that allows
displaying and printing the entire module hierarchy of a
project. All modules that belong to the project are shown:

1

2

3

4

5

Legend:
1 Automatically called up modules:

interrupt modules (.INT) and timer modules (.TIM)
2 Organization module (ORG.ORG)
3 Modules called up by command in the program:

program (.PRO), function (.FUN) and initialization modules
(.INI).

4 Virtual modules (in italics); they are called up by command,
but they have not been edited (they are empty).

5 External modules are part of the project but they are not be-
ing called up at present.

Organisation

 3 - 3

Software modules

Organization of module calls:
The modules containing program code (there are also the data
module which are modules without program code) represent a
kind of complete sub-programs. The way in which the modules
are organized already takes care of the return jump to the loca-
tion from where a module was called up. The user need not
program the return. Interrupt-controlled modules work very
much the same way.
Dies gilt auch für die interruptgesteuerten Bausteine.

Program lines to jump back to the calling module are rejected
by an error message. This also happens if you want a module to
call itself up.

Types of modules:
The following types of modules can be distinguished:
- Organization module
- Program modules
- Function modules
- Timer modules
- Interrupt modules
- Initialization modules
- Trigger modules
- KUBES modules
- Data modules

Watchdog:
The watchdog monitors the program runtime. The program run
is stopped and an error message output (system error marker
ERR00.00 = 3) if the program runtime is exceeded.
- Processing of the individual modules is monitored by a sepa-

rate watchdog time. There are approximately 70 ms available
for the processing of a module.

- Another watchdog time monitors the overall program (cycle
time). A watchdog error is output if the organization module
is not processed again after a maximum of 2 s.

You can measure the cycle time of your program yourself. In
appendix "B. Measuring the cycle time" we are presenting the
program "ZYKL_TST.PRO".

3 - 4

Modules

3.1. Organization module

Features:
Name: ORG.ORG
Number: 1
Length: max. 253 lines incl. max. 128 code lines
Function: organization of the overall program
Call: automatically at the beginning of each program

cycle

The organization module is the main program module of a pro-
ject. KUBES automatically creates it when you create a new
project (see KUBES Beginner's Manual, E 327 GB). This mod-
ule contains the branching instructions to all other modules.
For reasons of expediency, the programming of the organiza-
tion module should include program selection and calling up of
the modules responsible for overall tasks.
All commands are applicable without limitations (commands of
the initialization modules excluded).

Example (program listing):

======== Kubes ===================================== KUAX 680C =======
 Organization module Organization module Organization module Organization module Organization module IL
Project : E205D
Module : ORGORGORGORGORG No.: 1 created : Nov 26 1991 16:08
User : KUBES changed : Nov 26 1991 16:08
==

 1: JPP ONOFF 1
 2:
 3: JPP COUNTER 2
 4:
 5: L MOTOR O00.00 ; (motor conveyor belt)
 6: JPCP NUMACT 3
 7:
 8: LN MOTOR O00.00 ; (motor conveyor belt)
 9: JPCP NUMSUM 4

 3 - 5

Software modules

3.2. Program module

Features:
Name: xxxxxxxx.PRO
Number: 255
Length: max. 253 lines incl. 128 code lines
Function: user program for a separate part of the overall

problem; organization of the next module level
Call: from the organization module or other program

modules

Use KUBES to create program modules. They are managed in
the project under a (max. 8-digit) name and a number.
All commands are applicable without limitations (commands of
the initialization modules excluded).

Example (program listing):

======== Kubes ===================================== KUAX 680C =======
 Program module Program module Program module Program module Program module IL
Project : E205D
Module : COUNTERCOUNTERCOUNTERCOUNTERCOUNTER No.: 2 created : Nov 26 1991 16:15
User : Kevin Kubes changed : Nov 26 1991 16:15
Comment : COUNTER
==

 1: L COUNTER C00.00 ; (piece counter)
 2: O STOP I00.01 ; (switch off motor)
 3: = PULSE PP00.00
 4: L PULSE PP00.00
 5: JPCP SUM 5
 6: L ONMARKER M00.00 ; (marker motor ON/OFF)
 7: = COUNTER:12:V C00.00 ; (piece counter)
 8: L CIMP I00.02 ; (counting impulse of initiator)
 9: =C COUNTER C00.00 ; (piece counter)
 10: L CLEAR I00.03 ; (key "clear count”)
 11: JPCP NEW 6
 12:

3 - 6

Modules

3.3. Function module

Features:
Name: xxxxxxxx.FUN
Number: 255
Length: max. 253 lines incl. 128 code lines
Parameters: max. 16
Function: general-purpose module. It is created by the user

and can be equipped with parameters. The pro-
gram contained in this type of module is written
like that for the program modules.

Call: from the organization or program module

Up to 16 input and output parameters make it possible to ex-
ecute the function with different variables (operands, con-
stants). These parameters are entered into a table and are used
in the program part like normal operands under their own
names.
Multiple use with different parameters in one program is pos-
sible.
All commands are applicable without limitations (module calls
and commands of the initialization modules excluded).

Programmable timers (PTxx.xx) are not permissible as input
parameters. Not the logical timer output would be read but the
value of the status byte.
Remedy: Assign the timer output to a marker and then use the
marker as input parameter.

Example (calling up a function module):

; convert ASCII characters into binary value

 JPF ASC3BIN2 , _____
 ASC_23_B -| |- BIN_16,
 ASC_BS_3 -| |- ,
 VALUE_22 -|_____|-

 3 - 7

Software modules

3.4. Timer module

Features:
Name: xxxxxxxx.TIM
Number: 4
Length: max. 253 lines incl. 128 code lines
Function: Processing of sections of the program in intervals

of quartz precision controlled by time interrupts.
The following 4 time bases are available: 10 ms,
100 ms, 1 s, 10 s. The program contained in this
type of module is written like that for the pro-
gram modules.

Call: automatically by the assigned time interrupt

Amongst other things, the time interrupts serve the processing
of programmable timers. The timer modules created by the user
are called up and processed by these time interrupts.
All commands are applicable without limitations (module calls
and commands of the initialization modules excluded).

When creating an interrupt module please be aware of the fact
that the module number decides on its function. See the table
below.

The timer modules are called up by the following time inter-
rupts:

Timer Module No. Called up by Time Interrupt

1 10 ms

2 100 ms

3 1 s

4 10 s

The timer modules should be as short as possible to reduce the
time load on the CPU to a minimum. You should therefore only
include those operations in a timer module that you consider
really necessary. Everything else can be taken care of in the
program modules.

3 - 8

Modules

3.5. Interrupt module

Interrupt modules are called up by interrupts which are sig-
nalled to the CPU via the control bus. Interrupts can be trig-
gered by interrupt inputs, interrupt-controlling modules or by
failure or error messages.

Features:
Name: xxxxxxxx.INT
Number: 18
Legth: max. 253 lines including max. 128 code lines
Function: they serve quick reactions to events such as

"Count complete", "Undervoltage" etc. The pro-
gram contained in this type of module is written
like that for the program modules.

Call: automatically by the assigned interrupt

All commands are applicable without limitations (module calls
and commands of the initialization modules excluded).

When creating an interrupt module please be aware of the fact
that the module number decides on its function. See the tables
below.

 3 - 9

Software modules

3.5.1. Call by error or failure messages

For certain system errors it is practical to provide certain means
in the user program that allow keeping the effects of such er-
rors as small as possible. To be able to react fast enough, the
monitor program triggers an interrupt that calls up an interrupt
module. You can program this module to contain the required
reaction:

Trigger Controller Interrupt Module

undervoltage power supply 657P, 680I,
680C, 680CT

17
short-circuit on output 18

Refer to appendix "Error and failure messages" of the instruc-
tion manuals of the individual controllers to find explanations
of the causes of these failures. There you will also find sug-
gested actions to remedy the situation.

3 - 10

Modules

3.5.2. Call by interrupt-controlling modules (KUAX 680..)

The following section applies to controllers
- KUAX 680I,
- KUAX 680C and
- KDT 680CT.

Function modules, e.g. counter modules, communicate with the
user program via transfer addresses SLx... (in the KUAX 657
and 657P, these are the slave dual-port RAM addresses, hence
SLx).
Each module slot is assigned 32 addresses (16 from every
group of addresses, e.g. SLA and SLB for slot 0) which serve
various functions depending on the type of module

Each address group can call up an interrupt module which
means that one module can trigger up to 2 interrupt.

Trigger Controller
Transfer

Address Range
Interrupt
Module

Module 0

680I,
680C,
680CT

SLA00.00...01.15
SLB00.00...01.15

1
2

Module 1
SLC00.00...01.15
SLD00.00...01.15

3
4

Module 2
SLE00.00...01.15
SLF00.00...01.15

5
6

Module 3
SLG00.00...01.15
SLH00.00...01.15

7
8

Internal interrupt
inputs

680C,
680CT

SLJ00.00...01.15 10

 3 - 11

Software modules

3.5.3. Call by slave module (KUAX 657P)

Slave modules communicate with the user progra via dual-port
RAM addresses SLA...SLP. The address range is set by the DIP
switch on the module.
Every address range is assigned an interrupt module (1...16)
which can be called up by interrupt-controlling slave modules:

Trigger Controllers
Interrupt
Module

Slave dual-port
RAM:

SLA

657P

1
SLB 2
SLC 3
SLD 4
SLE 5
SLF 6
SLG 7
SLH 8
SLI 9
SLJ 10
SLK 11
SLL 12
SLM 13
SLN 14
SLO 15
SLP 16

There is a wide range of different slave modules available for
the KUAX 657P. They have different functions such as posi-
tioning, communication, regulation etc.

Please refer to the relevant instruction manuals to learn about
programming of these modules and handling of the interrupt
function in the user program.

3 - 12

Modules

3.6. Initialization module

Features:
Name: xxxxxxxx.INI
Number: 5
Length: max. 253 lines incl. max. 128 code lines
Function: Serves easy assignment of a certain value to oper-

ands without having to use logical operations,
e.g. for presetting process parameters, tables, text
fields, etc.

Call: from the organization and the program module

Only a limited set of instructions is applicable (see chapter
"5.15. Commands of the initialization modules").

To avoid extending the cycle time, initialization modules
should only be called up when needed but not cyclically.

Example (program listing):

======== KUBES ===
 Init. module IL
Project : K631TEXT Network :
Module : INIT No.: 1 created : Jul 26 1994 13:43
User : Kevin Kuax changed : Jan 31 1996 13:56
Comment : INIT
==
 1: INIT M00.00 BIT 1 ; (initialization)
 2: BC08.00 BYTE "Preset value:{10/3/1}$“
 3: SBC00.00 BYTE "Time:“..:..:...“$“
 4: SBC02.00 BYTE „““$“
 5: SBC04.00 BYTE „““,2,4,6,8,0,2,4,6,8,“$“
 6: HITKEY BD15.09 BYTE 0
 7: LINES BD15.12 BYTE 2 ; (no. of lines)
 8: CHARS BD15.13 Byte 20 ; (no. of characters)
 9: KEY BD15.14 WORD 1234 ; (key for test operation)
 10: IMGGO BD15.10 TEXT "Kuhnke GmbH Malente"

 3 - 13

Software modules

3.7. Trigger module

Features:
Name: xxxxxxxx.TRG
Number: 16
Length: max. 253 lines incl. max. 128 code lines
Function: Used in "Test mode with breakpoints" for trigger-

ing breakpoints.
Call: Under KUBES (see there) in test mode

All commands are applicable without limitations (module calls
and commands of the initialization modules excluded).

Is used in test mode under KUBES only. The result (contents of
the processor accu) at the end of the trigger module defines the
trigger condition. With byte or word operations, bit 7 of the
lowbyte in the accu is analysed.

Example (program listing):

; Trigger is I00.00 is on
; and PT00.00 is over

 L I00.00
 A PT00.00

3 - 14

Modules

3.8. KUBES module

Features:
Name: <set>.KNK
Number: 255
Parameters: max. 16
Function: Module for special solutions.
Call: from the organization and the program module

Written by Kuhnke in high-level programming language or As-
sembler and delivered in one or several libraries on diskette.
By using the input and output parameters you can execute the
function with different variables (operands, constants). Multi-
ple use with different parmeters in one program is allowed.

Programmable timers (PTxx.xx) are not permissible as input
parameters. Not the logical timer output would be read but the
value of the status byte.
Remedy: Assign the timer output to a marker and then use the
marker as input parameter.

Example (calling up a KUBES module):

; Multiplication followed by division operation
 JPK MULDIV32 , _____
 MU_CAND -| |- RESULT,
 MU_PLIER -| |- DI_SOR_0,
 DIVISOR -| |- QUOT_0,
 -|_____|- ADDRESS

There is a separate instruction manual for the KUBES mod-
ules: E 386 GB, KUBES Modules.

 3 - 15

Software modules

3.9. Data module

Many PLC applications require management of large amounts
of data such as recipes, sets of parameters or positioning data.
The available markers are often not enough.
It is the use of operating terminals in particular which has made
data modules an increasing necessity. They give you the oppor-
tunity of editing or creating data in the actual system.
Implementation of data modules also allows connecting exter-
nal development tools to the PLC via a data interface.

Features:
Name: xxxxxxxx.DAT
Number: max. 255, depending on the capacity of the user

memory
Length: 256 byte
Function: Serves storing large amounts of data (tables, texts

etc.) in the user program memory, i.e. either in
the EPROM (read only) or in the RAM (read/
write). Data modules are accessed from within
the user program via data processing ranges
DB0...DB7.

Call: from the organization, program, function, time,
and interrupt modules using the LoadDB and
StoreDB commands.

Prerequisites:
- KUBES4, version 4.10 or higher
- PLC monitor, version 4.17 or higher

3 - 16

Modules

3.9.1. Creating data modules

Use the Module Editor's "Create" command from the "Module"
menu to create data modules. Choosing this command displays
the following dialog box:

Select the correct type and name for your module.

If the module name ends in the numbers "001", the next KUBES
dialog box will allow you to create several data modules simul-
taneously (in this case: DAT_002, DAT_003...).

Clicking on "OK" opens the next dialog box:

 3 - 17

Software modules

You are requested to make several entries:
- Decide whether you want to store the data module(s) in the

program range (EPROM) or in the data range (RAM) of the
user memory. Data modules stored in the program range
(EPROM) cannot be changed while the controller is running.
Data modules stored in the data range can be changed, how-
ever.

- Enter bank number and starting address within the bank for
data modules stored in the RAM.

You have to reserve a data memory range for modules that you
want to store in the RAM either before creating them or after-
wards during online operation (KUBES Main Menu, PLC
menu, command Set Memory Size).
- In the box next to Following enter the number of additional

data modules that you want to create. You have the option of
making this entry only if the name you assigned to the data
module to be created in the previous dialog box ended in
001.

- You can also specify a file from which you want to import
existing data into the module you are creating (see ch. "3.9.5
Importing data into a data module"). If you do not specify a
file, the data module will be filled with zeros. After you have
created the data module it will be automatically taken over
into the project.

3.9.2. Transmitting data modules to the PLC

Before transmitting the project you will be shown a list box
from which you can select the data modules that you want to
transmit to the PLC.
Optionally you can use a new Module Editor command to
transmit individual data modules to the PLC: PLC menu, com-
mand Transmit Data Module.

3 - 18

Modules

3.9.3. Getting data modules from the PLC

Use the command Load Data Module from the Module Editor's
PLC menu to get data modules from the PLC to write them to a
file. This is also possible while adjusting the project. RAM
modules are always reported to be modified without this pre-
venting a successful adjustment however. The purpose is to be
able to read back the RAM data modules via the adjustment
dialog at any time.

3.9.4. Exporting data modules

Data stored in a data module on the PC can be written to a file
using the Module Editor's command Export Data Module from
the Module menu.

3.9.5. Importing data into a data module

Data stored in a file on the PC can be loaded into a data mod-
ule using the Module Editor's command Import Data Module
from the Module menu. Data to be imported can be simple text
files or tables.

3.9.6. Editing data modules online

Use the Display Address Range to indirectly editing data mod-
ules. To do so load the contents of the data module into a data
processing range (DBx, see ch. 3.9.7) (command: LoadDB...).
This data processing range can be edited in the Display Ad-
dress Range. The data can then be written back to the module
upon the corresponding user program command (command:
StoreDB...) as long as the destination range of the data module
is in the RAM.

 3 - 19

Software modules

3.9.7. Data processing ranges

Data processing ranges provide a means of indirectly accessing
the data modules. There are 8 data processing ranges
(DB0...DB7) which you can treat just like byte marker ranges.
Each range consists of 256 byte which exactly corresponds to
the size of a data module:

DB000.00 - DB015.15
DB100.00 - DB115.15
DB200.00 - DB215.15
DB300.00 - DB315.15
DB400.00 - DB415.15
DB500.00 - DB515.15
DB600.00 - DB615.15
DB700.00 - DB715.15

Commands LoadDB and StoreDB are used for copying data be-
tween data module and data processing range

Storing the data module again (StoreDB) is only possible if the
data module is in the RAM.

Datenbaustein Datenbearbeitungsbereich

LoadDB x,<Name>

StoreDB x,<Name>

<Name>

x = 0...7

DBx00.00
DBx00.01

.

.

.

.

.

.

.

.

.

.

.

.
DBx15.15

Data module Data processing range

3 - 20

Modules

3.9.8. Programming

The contents of data modules must be loaded to a data process-
ing range before they can be edited in the user program.
In the user program they can be read from and edited in every
programmable module type.

3.9.8.1. Load commands

The purpose of the load commands is to load the contents of a
data module into a data processing range. Once loaded they can
be processed from within every other module type (organiza-
tion, program, function modules etc.) using the normal PLC
commands.

LoadDB x,<Name>
Loads data module <Name> into data processing range x (=
0...7).

LoadDB A1,<Name>
Loads data module <Name> into the data processing range
whose number (= 0...7) is stored in byte marker A1.

LoadDB A1,A2
Loads the data module whose number (= 0...255) is stored in
byte marker A2 into the data processing range whose number
(= 0...7) is stored in byte marker A1.

LoadDB x,A2
Loads the data module whose number (= 0...255) is stored in
byte marker A2 into data processing range x (= 0...7).

 3 - 21

Software modules

3.9.8.2. Store commands

The purpose of the store commands is to write the contents of a
data processing range to a data module.
However, this is only possible if the data module is stored in
the RAM.

StoreDB x,<Name>
Copies data processing range x (= 0...7) to data module
<Name>.

StoreDB A1,<Name>
Copies the data processing range whose number (= 0...7) is
stored in byte marker A1 to data module <Name>.

StoreDB A1,A2
Copies the data processing range whose number (= 0...7) is
stored in byte marker A1 to the data module whose number (=
0...255) is stored in byte marker A2.

StoreDB x,A2
Copies data processing range x (= 0...7) to the data module
whose number (= 0...255) is stored in byte marker A2.

3 - 22

Modules

 4 - 1

 Software

4. Operands
All addresses which can be addressed in the user program for
signal processing or data storing are called operands. They are
"operated" with.

On the following pages you will only find an overview of the
different types of operands. For details please refer to the
"Software" chapters of the instruction manuals of the various
controllers.

4.1. Addressing

The operands are arranged in groups. Each group consists of a
maximum of 255 operands. The way these operands are ad-
dressed is represented by the address of the first input operand:

I00.00
group specifier group separator channel
(I, O, M, BM...) (00...15) (.) (00...15)

Legend:
- Group specifier: indicates the function of many of the oper-

ands (I=input, O=output, M=marker, BM=byte marker)
- Group: from 00 through to 255 max. (256 groups). Individual

groups can be smaller, e.g. timers, counters...
- Separator: separates group number and channel number. In-

put is compulsory.
- Channel: from 00 through to 255 max. (256 channels)

Input:
Leading zeros can be left out when inputting addresses in
KUBES. Examples:
Input Representation
I. I00.00
O1. O01.00
I1.1 I01.01

4 - 2

Operands

Offset addressing:

It is possible to indicate an offset for the absolute addresses of
the local operands. The address is then made up by adding ab-
solute address and offset.

L BM00.00[BM00.01] means that the value in BM00.01
(offset) is added to the address of BM00.00. The resulting new
address then responds to the load command.

The value of the offset should be chosen in a way that excludes
exceeding the corresponding operand range (max. 256 ad-
dresses).

Reason:
Exceeding the operand range leads to reading (with read com-
mands L,A,O...) from or writing (with assignment commands
=, =N) into an operand from another range (see table on the
right). This can lead to unintended machine functions or to pro-
gram destruction.

In the instruction manuals of the controllers you will find a ta-
ble called "address assignment of operands". Read this table to
learn how the operand ranges are organized in the memory.

 4 - 3

 Software

4.2. Symbolic specification of operands

KUBES has a Symbol Table which offers you the possibility to
specify names, or symbols, for the operands used. You can add
an explanatory comment and a supplementary text.

Legend:
- Address

Specification of the operand as preset by the system
- Symbol

Identification of the operand as defined by the user. It should
indicate the intended use of the operand. In the program , the
symbol is listed together with the address. As data input you
can use either the address or the symbol.
Length: 8 characters (letters, numbers or <_>)

- Comment
Explanatory text about the operand function. In the program
the comment is listed together with the address.
Length: 35 characters

- Supplement
Supplementary text that only appears on the printout of the
symbol table but not in the program listing. It be used, for
example, to indicate the destination wiring point (terminal)
of inputs or outputs. The printout of the symbol table can
thus be used as a wiring diagram.

4 - 4

Operands

Advantages of the use of symbols:
- improved readability of the program

the symbols refer to the actual use of the operand (the ad-
dress in itself is neutral with regard to the application)
Example:
Address Symbol Comment
I00.00 START_FF start forward feed

- Review of the operands used already
This is probably the most important aspect. The more oper-
ands you need the more important a permanently updated list
becomes. Once you have specified all operands in the symbol
table you have an almost perfect guarantee that no double as-
signment can occur. The Symbol Table ensures that.

- Reuse of program sections
store parts of the program as a module in a folder under
KUBES and you will be able to easily use it again for other
projects. If you entered the operands in the symbol table it
will be easy to reassign them to other addresses.

- Use as wiring diagram
enter the connection point as a supplement to the operand so
that you know to which point the input or output is to be
wired and your symbol table will provide you with a perfect
wiring diagram:
Address Symbol Comment Supplement
I00.00 START_FF start forward feed X100/1
I00.01 POS_FF forward feed into positionX101/1
etc.

We recommend always using these advantages. We know from
experience that the little plus in time you need for program-
ming is more than compensated by much simplified or unneces-
sary trouble shooting.

You will surely notice that for many of the examples of this
manual we have done without the Symbol Table. The reason for
this is that we wanted to make the direct address relation clear.

 4 - 5

 Software

4.3. Features of the operand groups

4.3.1. Digital inputs and outputs

- Inputs and outputs represent the process as a process image
which is updated between two subsequent program cycles.

- Inputs "read" the signals of switches, key-switches, initiators
etc. and report the signal status to the CPU via the control
bus.

- Outputs output control signals to relays, contactors, magnets
etc. in order to switch them on or off. Determined by the user
program, the CPU transmits the signals to the output modules
via the control bus. At the same time, the signals are also
transmitted to RAM memory cells, which are addressed un-
der the same address on the CPU. The processor accesses this
memory cell to read the status of an output (commands: L, A,
O...).

Configuration
You define your own configuration by plugging (or not plug-
ging) the corresponding modules into the controller (if this is of
a modular design).
The following systems are exceptions to this rule:
- KUAX 644 PC Control

has no local inputs and outputs of its own. All peripheral sig-
nals are read via PROFIBUS from decentralized devices
(KUAX 680S, KUAX 680I or other PROFIBUS stations).

- KUAX 680C Compact Control
and Control Terminal KDT 680CT
these are permanently configured with inputs and outputs. If
there is a bus board you can also plug in modules to provide
further inputs and outputs.

4 - 6

Operands

Addressing
in KUAX 657P groups with 16 channels each
Inputs: I00.00...15.15

SI00.00...15.15
Outputs: O00.00...15.15

SO00.00...15.15
in KUAX 680I with 8 channels each
Inputs: I00.00...xx.07
Outputs: O00.00...xx.07
in KUAX 680C and KDT 680CT groups with 8 and 2 channels
each
Inputs: I00.00...xx.07
Counter inputs.: SI00.00...00.01
Interrupt inputs: SI01.00...01.01
Outputs: O00.00...xx.07

Access
Inputs and outputs are updated as a process image between pro-
gram cycles. Commands of the user program access cells of
this process image.
Exception: the KUAX 657P has no process image. Inputs are
accessed directly during the reading process. Outputs are also
assigned directly.

 4 - 7

 Software

4.3.2. Analog inputs and outputs

- Inputs "read" the analog values of temperatures, liquid levels,
speeds etc. Analog-to-digital conversion is done by the pro-
cessor. The digital value can be processed in the program.

- Outputs output analog control signals for drives etc. in order
to control these. Depending on the user program, the signals
are transmitted to the control bus by the CPU. The digital-to-
analog converter is on the module itself. The analog signal is
tapped off the corresponding terminals.

Configuration
You define your own configuration by plugging (or not plug-
ging) the corresponding modules into the controller (if this is of
a modular design).
The following systems are exceptions to this rule:
- KUAX 644 PC Control

has no local inputs and outputs of its own. All peripheral sig-
nals are read via PROFIBUS from decentralized devices.

- KUAX 680C Compact Control
and Control Terminal KDT 680CT
these are permanently configured with inputs and outputs. If
there is a bus board you can also plug in modules to provide
further inputs and outputs.

Addressing
in KUAX 657P
Analog inputs: via dual-port RAM of slave modules only
Analog outpus: AO00.00...03.15
in KUAX 680I, 680C and KDT 680CT groups of 4 channels
each
Analog inputs: AI00.00...03, AI01.00...03, AI02.00...02
Analog outputs: AO00.00...xx.03

4 - 8

Operands

4.3.3. Bit markers and byte markers

There is a large number of byte markers available on the CPU
for marking (storing) current data.
Some of these byte markers are remanent if the CPU is accu-
buffered.

Addressing
Bit markers: M00.00...15.15

R00.00...15.15
etc.

Byte markers: BM00.00...15.15
BR00.00...15.15
DB000.00...DB715.15

For word operations (16 bit) you combine 2 byte markers.

4.3.4. Programmable timers

By default, the controllers have 128 software timers available.
The time range is from 10ms - 65535s. These timers can be
programmed with raising or falling delay or as clock pulse or
pulse generators respectively. If desired they can be remanent.

Addressing
Programmable timers: PT00.00...07.15

 4 - 9

 Software

4.3.5. Software clock pulse

The system makes 4 software clock pulses available via byte
operands. These operands are automatically incremented in the
specified clock frequency (0...255). The user program can ana-
lyse this for time-controlled operations.

Addressing
10 ms: T00.00
100 ms: T00.01
1 s: T00.02
10 s: T00.03

4.3.6. Counters

32 counters with a counting depth of 16 bit (0-65535) can be
programmed as up or down counters. They too can be remanent
if desired.

Addressing
Counters: C00.00...01.15

4.3.7. System error marker "ERR00.00"

Recognized system errors are written into byte operand (8 bit)
"ERR00.00" by the monitor program. They can be read by the
user program and then analysed correspondingly. Please refer
to the actions recommended in appendix "D. Reactions to fail-
ures" of the instruction manuals of the controllers.

4 - 10

Operands

 5 - 1

 Commands

5. Description of the commands
The overview below describes all commands in plain text.

Application to operands for bit, byte and word operations:
A large portion of the commands can be used for bit and byte
and word operations. Although this is a great advantage it can
also be a source of danger if used unwisely:
Please avoid logical operations with operands of different sizes
if at all possible. Because if you do, the result of the operations
cannot always be predicted as bit operands only influence bit 7
of the accumulator while all bits are analysed or influenced in
byte and word operations.
Example:
L I00.00
writes the status of the input into bit 7 of the accumulator while
leaving all other bits uninfluenced. These could have various
values, depending on the historical situation.
If you then assign the value to a byte operand
= BM00.00
only bit 7 of this operand will be set and defined, all other bits
will be in or take on an undefined status.

Differences between the controllers:
As there may be differences in the use of the commands in the
various control systems, the information given in this chapter is
kept very general.
Please refer to appendix "A. References" of this manual to find
a list of instruction manuals. For technical information about
the commands please refer to chapter "Commands overview" of
the instruction manual of the relevant controller.
There you will find the following information:
- which types of operands and constants can be linked to the

commands,
- how much address space do the commands occupy in the user

memory,
- how long is the processing time for a command,
- whether and how the carry and zero bits are influenced.

5 - 2

Commands

Command Function

L Load
Loads the value of the bit or byte operand into the accu

LN Load with negation
Loads the negated value of the bit or byte operand into the accu

LD Load
Loads the value of the word operand (16 bit) into the accu

U logical AND operation
Logical AND operation bit-by-bit between the value of the bit or byte
operand and the contents of the accu: "1 A 1 = 1", "1 A Ø = Ø",
"Ø A Ø = Ø", "Ø A 1 = Ø". The result is stored in the accu.

UN logical NAND operation (AND not)
Logical NAND operation bit-by-bit between the negated value of the bit or
byte operand and the contents of the accu: "1 AN 1 = Ø", "1 AN Ø = 1",
"Ø AN Ø = Ø", "Ø AN 1 = Ø". The result is stored in the accu.

UD logical AND operation
Logical AND operation bit-by-bit between the value of the word operand
(16 bit) and the contents of the accu: "1 A 1 = 1", "1 A Ø = Ø",
"Ø A Ø = Ø", "Ø A 1 = Ø". The result is stored in the accu.

O logical OR operation
Logical OR operation bit-by-bit between the value of the bit or byte
operand and the contents of the accu: "1 O 1 = 1", "1 O Ø = 1",
"Ø O Ø = Ø", "Ø O 1 = 1". The result is stored in the accu.

ON logical NOR operation (OR not)
Logical NOR operation bit-by-bit between the negated value of the bit or
byte operand and the contents of the accu: "1 ON 1 = 1", "1 ON Ø = 1",
"Ø ON Ø = 1", "Ø ON 1 = Ø". The result is stored in the accu.

OD logical OR operation
Logical OR operation bit-by-bit between the value of the word operand (16
bit) and the contents of the accu: "1 O 1 = 1", "1 O Ø = 1", "Ø O Ø = Ø",
"Ø O 1 = 1". The result is stored in the accu.

XO logical EXCLUSIVE-OR operation (antivalence)
Logical EXCLUSIVE-OR operation bit-by-bit between the value of the bit
or byte operand and the contents of the accu: "1 XO 1 = Ø", "1 XO Ø = 1",
"Ø XO Ø = Ø", "Ø XO 1 = 1". The result is stored in the accu.

XON logical EXCLUSIVE-OR operation (equivalence)
Logical EXCLUSIVE-OR operation bit-by-bit between the value of the bit
or byte operand and the contents of the accu: "1 XON 1 = 1", "1 XONØ =
Ø", "Ø XON Ø = 1", "Ø XON 1 = Ø. The result is stored in the accu.

5.1. Logical operations commands

 5 - 3

 Commands

Examples: L I00.00
Load status (bit) of the input

L BM00.00
Load contents (byte/8 bit) of the byte marker

LD BM00.00
Load contents (word/16 bit) of byte markers BM00.00 and 01

L 200
Load constant value (8 bit, 0...255)

LD 2000
Load constant value (16 bit, 0...65535)

LN I00.00
Load negated status (bit) of the input

LN BM00.00
Load negated contents (byte/8 bit) of the byte marker

To read unoccupied input addresses

The note of warning below concerns:
- in KUAX 680I, 680C and KDT 680CT:

all input channels I(SI)xx.08...15, as only the 8 channels
I(SI)xx.00.00...07 are occupied per group,

- in all modular systems:
all input addresses for which no module has been plugged in,

- in KUAX 644:
all local inputs as this controller has no inputs of its own:

Avoid reading input addresses with no corresponding hardware
configuration. In such cases, the value read depends on the
current status of the bus data line and is undefined (i.e. not de-
fined "0").

5 - 4

Commands

5.2. Assignments and set commands

Cmnd Function

=, =D assignment
Writes the contents of the accu into the memory addressed by the operand.

S conditional set
Sets the value of the operand to log 1 if there is log 1 in the accu after the
preceding operation; it remains unchanged if there is log 0 in the accu.

R conditional reset
Sets the value of the operand to log 0 if there is log 1 in the accu after the
preceding operation; it remains unchanged if there is log 0 in the accu.

=1 unconditional set
Sets the value of the bit operand to logical 1, regardless of what is in the
accu.

=0 unconditional reset
Sets the value of the bit operand to logical 0, regardless of what is in the
accu.

 5 - 5

 Commands

Cmnd Function

ADD,
ADDD

Addition
Adds the value of the operand to the contents of the accu. The sum is stored
in the accu after the operation.

SUB,
SUBD

Subtraction
Subtracts the value of the operand from the contents of the accu. The
difference is stored in the accu after the operation.

MUL,
MULD

Multiplication
Multiplies the value of the operand by the contents of the accu. The product
is stored in the accu after the operation.

DIV,
DIVD

Division
Divides the value of the operand by the contents of the accu. The quotient
is stored in the accu after the operation.

5.3. Arithmetic commands

5 - 6

Commands

Cmnd Function

CMP,
CMPD

Comparison
Compares the value of the operand to the contents of the accu. The
operation sets internal flags. These lead to conditional jump instructions
and are used for program branching.

CMP=,
CMPD=

Compare if equal
Like "Comparison" plus influence on the accu: if the comparison is "true"
then the accu is set to 255 (logical 1), otherwise it is cleared.

CMP<>,
CMPD<>

Compare if inequal
Like "Comparison" plus influence on the accu: if the comparison is "true"
then the accu is set to 255 (logical 1), otherwise it is cleared.

CMP<=,
CMPD<=

Compare if smaller or equal
Like "Comparison" plus influence on the accu: if the comparison is "true"
then the accu is set to 255 (logical 1), otherwise it is cleared.

CMP>=,
CMPD>=

Compare if greater or equal
Like "Comparison" plus influence on the accu: if the comparison is "true"
then the accu is set to 255 (logical 1), otherwise it is cleared.

5.4. Comparison commands

 5 - 7

 Commands

5.5. Shift and rotation commands

Cmnd Function

LSL,
LSLD

logical shift left in the accu
Shifts the contents of the accu by one binary position (has the same effect
as a multiplication by 2). The result of the operation is stored in the
accumulator.

LSLM,
LSLDM

logical shift left in the operand
Shifts the contents of the operand by one binary position (has the same
effect as a multiplication by 2). The result of the operation is stored in the
operand.

LSR,
LSRD

logical shift right in the accu
Shifts the contents of the accu by one binary position (has the same effect
as dividing the contents by 2). The result of the operation is stored in the
accumulator.

LSRM,
LSRDM

logical shift right in the operand
Shifts the contents of the operand by one binary position (has the same
effect as dividing the contents by 2). The result of the operation is stored
in the operand.

ROL,
ROLD

Roll (end-around shift) left in the accu by Carry
Shifts the contents of the accu by one binary position. The contents of the
carry bit moves into the digit thus become vacant; the carry value is
written into the carry bit.

ROLM,
ROLDM

Roll (end-around shift) left in the operand by Carry
Shifts the contents of the operand by one binary position. The contents of
the carry bit moves into the digit thus become vacant; the carry value is
written into the carry bit.

ROR,
RORD

Roll (end-around shift) right in the accu by Carry
Shifts the contents of the accu by one binary position. The contents of the
carry bit moves into the digit thus become vacant; the carry value is
written into the carry bit.

RORM,
RORDM

Roll (end-around shift) right in the operand by Carry
Shifts the contents of the operand by one binary position. The contents of
the carry bit moves into the digit thus become vacant; the carry value is
written into the carry bit.

5 - 8

Commands

5.6. Manipulation of bytes and flags

Cmnd Function

INC,
INCD

Increment
Increments the value of the operand by one.

DEC,
DECD

Decrement
Decrements the value of the operand by one.

CLR Clear
The value of the operand becomes 0.

NOP Do-nothing operation
No operation, just forwarding to the next instruction.

SEC Set CARRY
Sets the CARRY bit to 1.

CLC Clear CARRY
Clears the CARRY bit.

 5 - 9

 Commands

5.7. Module calls

Cmnd Function

JPP unconditional call of a program module

JPCP conditional call of a program module
Calls the module up if the accu contains a bit operand set to logical 1 (bit 7
is read).

JPF unconditional call of a function module

JPCF conditional call of a function module
Calls the module up if the accu contains a bit operand set to logical 1 (bit 7
is read).

JPK unconditional call of a KUBES module

JPCK conditional call of a KUBES module
Calls the module up if the accu contains a bit operand set to logical 1 (bit 7
is read).

JPINIT unconditional call of the initialization module

5 - 10

Commands

5.8. Jump commands

Jumps within a program module are carried out to a program
line identified by a jump mark. Difference is made between the
following types of jumps:
- unconditional jumps,
- conditional jumps that analyse the logical state of bit oper-

ands,
- conditional jumps that analyse the result of comparison op-

erations.

Command Function

JP
unconditional jump

JPC
conditional jump if yes (log. 1)
Carries out the jump if the accu contains a bit operand set to logical
1 (bit 7 is read)

JPCN
conditional jump if no (log. 0)
Carries out the jump if the accu contains a bit operand set to logical
0 (bit 7 is read)

Conditional jumps after comparison operations:
Carries out the jump if the contents of the accu, in relation to the
compared value, is:

JP=
equal or 0

JP<>
inequal

JP<
smaller

JP>
greater

JP<=
smaller or equal

JP>=
greater or equal

Jumps depending on the state of Carry or Zero bit:

JPCS, JPCC
Jumps if carry bit is set (1) or cleared (0)

JPZS, JPZC
Jumps if zero bit is set (1) or cleared (0)

Jumps depending on the sign bit in the accu:

JP+, JP-
Jumps if value is positive or negative

 5 - 11

 Commands

Exx.00

Exx.01

Exx.02

Exx.03

Exx.04

Exx.05

Exx.06

Exx.07

7 6 5 4 3 2 1 0

Axx.00

Axx.01

Axx.02

Axx.03

Axx.04

Axx.05

Axx.06

Axx.07

Akku

K8N1 Axx.00

K1N8 Exx.00

Ausgänge Eingänge

5.9. Copy commands

Example for 8 bit copy commands:
C1T8 Ixx.00 ;copies 8 inputs

; into the accu
C8T1 Oxx.00 ;cop. contents of the accu

; into 8 outputs

The figure below illustrates the function. The arrows indicate
the direction:

Command Function

C1T8 copies the values of eight 1 bit operands into the 8bit accu

C1T16 copies the values of sixteen 1 bit operands into the 16bit accu

C8T1 copies the value in the 8bit accu into eight 1 bit operands

C16T1 copies the value in the 16bit accu into sixteen 1 bit operands

Accu

C8T1 Oxx.00

C1T8 Ixx.00

Outputs Inputs

Read
A = O
E = I

5 - 12

Commands

5.10. Binary<->BCD conversion

Command Function

BINBCD3
Binary-to-BCD conversion into a 3 decade BCD value
Before the operation, the accu contains a 16bit binary value. After
the operation, it contains the same value as a 3 decade BCD value.

BCDBIN3
BCD-to-binary conversion of a 3 decade BCD value
Before the operation, the accu contains a 3 decade BCD value.
Afterward, it contains the same value as a 16bit binary value.

Example:
LD 987 ;load binary value
=D BM00.00 ; store in 2 byte markers
BINBCD3 ;binary-to-BCD conversion
=D BM00.02 ; store in 2 byte markers

Use the Binary display mode of the Module Editor's Dynamic
Display to view the effect of the individul commands. As the
contents of the accu cannot be displayed directly, we use byte
markers in our example:

The command LD 987
maps the binary value as follows:

0000 0011 1101 1011
 high byte low byte
 (BM00.01 BM00.00)

The command BINBCD3
converts the binary value into a BCD value:

0000 1001 1000 0111
 9 8 7 (decimal)

 high byte low byte
 (BM00.01 BM00.00)

BCD-to-binary conversion follows the same principle, but the
other way around.

These commands can be used to convert values up to 999 max.
There are KUBES modules available to convert 4-digit num-
bers.

 5 - 13

 Commands

5.11. Programmable pulses (edge analysis)

After switching the controller on (or after RESET), the pulse
has to be passed once at a value of 0 as the function cannot be
guaranteed otherwise.
Recommendation: Use a marker to assign the pulse value and
map the input signal after it on the marker.

Example:
; To create a pulse signal

L M00.00 ;marker
= PP00.00 ; creates pulse
L I00.00 ;map input
= M00.00 ; on marker

; To analyse the pulse signal
L PP00.00 ;pulse signal
JPCN END ; no -> jump
INC BM00.00 ;increment if signal

END NOP

Command Function

L
=

I00.00
PP00.00

The programmable pulse output is set when the status of the
input changes from 0 to 1. The programmable pulse output is
reset at the next run of this program part (next cycle).

L
=N

I00.00
PP00.00

The programmable pulse output is set when the status of the
input changes from 1 to 0. The programmable pulse output is
reset at the next run of this program part (next cycle).

L
=

PP00.00
O00.00

Loads the output signal of the programmable pulse into the
accu and assigns it to an output.

5 - 14

Commands

5.12. Programmable timers

You can program up to 128 software timers in the range of 10 ms - 65535s.
These timers have the addresses PT00.00 -PT07.15.

To start a timer:
Assignent Address:Time value *Time basis :Function :Remanence *)

R=Remanence

R Raising delay
F Falling delay
P Impulse
C Clock pulse

10ms, 100ms, 1s

16bit constant (1 - 65535)
16bit variable (e.g. BM01.02 (+BM01.03))

Address of the software timer (e.g. PT01.05)

= Start of the software timer at edge 0→1, Stop and RESET at log. 0

Examples: = PT01.00:175*100ms:R:R
Start raising delay of 17.5 s with remanent actual value

= PT01.00:BM04.06*100ms:F:R
Start falling delay with variable time value
(BM04.06/BM04.07 * 100 ms = preselection)

To scan an output: L PTxx.xx
Load logical time output into the accu

To scan the actual value (resid. value): LD PTxx.xx
Example: LD PT01.02

=D BM06.02
Write residual value into BM06.02 and BM06.03

To halt the timer: =TH PTxx.xx
Example: L I01.00

=TH PT01.03
The timer is halted while I01.00=1 (without RESET)

*) Entering “:R” for the zero-voltage guarantee of the actual timer value is optional.

 5 - 15

 Commands

5.13. Programmable counters

You can program up to 32 software counters in the range of 1-65535. These
counters have the addresses C00.00 -C01.15.

To start a counter:
Assignment Address :Counter value :Function :Remanence *)

 R=Remanence

F Forward count
B Backward count

16bit constant (1 - 65535)
16bit variable (e.g. BM01.02 (+BM01.03)

Address of the software counter (e.g. C01.05)

= Start of the software counter at edge 0→1, Stop and RESET at log. 0

Examples: = C00.00:175:F
Start forward counter with preset value 175

= C01.01:BM00.00:B:R
Load remanent backward counter with variable preset value (is
in BM00.00 and BM00.01).

To scan an output: L Cxx.xx ;Count complete
Load logical counter output into the accu

To scan an actual value: LD Cxx.xx
Example: LD C01.01

=D BM06.02
Write actual value into BM06.02 and BM06.03

To count/transfer the clock pulse: =C Cxx.xx
Example: L I00.01 ;Clock pulse

=C C01.01
Input I00.01 represents the counting pulse. With each positive
edge (0/1 transition), the count is increased by 1.

*) Entering “:R” for the zero-voltage guarantee of the actual counter value is optional.

5 - 16

Commands

5.14. Special commands

Command Function

O_OFF

Outputs off.
Deactivates the actuating elements of all outputs but does not change
the internal status of the output "markers".
The program keeps running.
Use for example to react to short circuits
(see instruction manual of the controller, appendix "Reactions to
failures")

O_ON
Ouptuts on.
Reactivates the actuating elements of all outputs.
The program keeps running.

RESET

Reset and stop.
Resets all non-remanent outputs, markers, timers and counters and
stops program execution.
Restart is only possible by switching the supply off and on again.
Use for example to react to very extensive times of undervoltage
(see instruction manual of the controller, appendix "Reactions to
failures")

WAIT n

Wait for "n" * 10 milliseconds (interrupt module 17 only!).
Defines an internal wait loop. The delay time is indicated in
milliseconds (n = 1...6[* 10 ms], i.e. 60 ms max.). Program execution
stops for this time. Program execution is resumed when the set time
interval is over.
Note: longer wait loops may lead to triggering the watchdog (see
appendix "D.3. Watchdog").
Use: e.g. reaction to undervoltage with defined program exec. delay
(see instruction manual of the controller, appendix "Reactions to
failures")

 5 - 17

 Commands

5.15. Commands of the initialization modules

The initialization modules are a special variety of modules.
None of the commands described previously in this chapter can
be used here. On the other hand can the following commands
only be used in the initialization modules.

Command Function

BIT

Assigns logical values (signs 0/1) to one or several 1bit addresses (outputs
or markers). Examples:
O00.00
O00.00
O00.00

BIT
BIT
BIT

1
1,0,1,1....
[16],1

;single bit
;bit string with different signals
;bit string with [max. 255] equal signals

BYTE

Assings values to one or several (subsequent) byte addresses (8bit). Each
value may be one of the range 0...255. Examples:
BM00.00
BM00.00
BM00.00
BM00.00

BYTE
BYTE
BYTE
BYTE

75
$4B
%01001011
"K"

;single byte as decimal value
;single byte as hexadecimal value
;single byte as binary value
;single byte as ASCII character

BM00.00
BM00.00

BYTE
BYTE

1,18,0,125...
[8],128

;byte string with different values
;byte string with [max. 255] equal values

WORD

Assigns values to one or several word addresses (16bit = 2 byte). Each
value may be one of the range 0...65535. Examples:
BM00.00
BM00.00
BM00.00
BM00.00
BM00.00

WORD
WORD
WORD
WORD
WORD

19285
$4B55
%0100101101010101
+4.5V
9.1mA

;single word as decimal value
;single word as hexadecimal value
;single word as binary value
;single word as voltage (-10...+10V)
;single word as current (-20...+20mA)

BM00.00
BM00.00

WORD
WORD

1,1800,10000,125...
[8],10000

;word string with different values
;word string with [max. 128] equal values

TEXT

Assigns text to a number of byte addresses. Each individual text is filed in
this form: <length><actual text><zero>. The length comprises itself and
the last sign (zero). A text like this may be up to 253 characters long as the
total length must not exceed 255. Examples:

BM00.00 TEXT "KUHNKE" ;single text

BM00.00 TEXT "KUHNKE", " MALENTE"... ;text string

5 - 18

Commands

5.16. Commands of the data modules

The commands of the data moduls are only listed again for rea-
sons of completeness. Refer to chapter "3.9. Data module" to
find a detailed description of these commands.

Cmnd Operand Function

LoadDB

x,<name>
loads the contents of data module <name> into data processing range
DBx00.00...15.15 (x = 0...7)

byte1,<name>
loads the contents of data module <name> into data processing range
DBx00.00...15.15 (x = value 0...7 in byte1)

x,byte2
loads the contents of data module number y (y = value 1...255 in byte2) into
data processing range DBx00.00...15.15 (x = 0...7)

byte1,byte2
loads the contents of data module number y (y = value 1...255 in byte2) into
data processing range DBx00.00...15.15 (x = value 0...7 in byte1)

StoreDB

x,<name>
stores the contents of data processing range DBx00.00...15.15 (x = 0...7) in
data module <name>

byte1,<name>
stores the contents of data processing range DBx00.00...15.15 (x = value
0...7 in byte1) in data module <name>

x,byte2
stores the contents of data processing range DBx00.00...15.15 (x = 0...7) in
data module number y (y = value 1...255 in byte2)

byte1,byte2
stores the contents of data processing range DBx00.00...15.15 (x = value
0...7 in byte1) in data module number y (y = value 1...255 in byte2)

6 - 1

Examples

6. Programming examples
The examples given in this chapter are basically applicable to
all controllers for which this manual was written. However,
there are some structural differences which is why you should
read the following notes:

- The KUAX 644
has no local inputs or outputs. However, you can use most of
the examples for internal markers and external operands
(PROFIBUS) just the same.

- The KUAX 657P
has no process image for the local inputs and outputs. This
means that the status of an input can change during one pro-
gram cycle. You can thus switch an output on and off several
times. This may lead to a jittering of the output.

- KUAX 680I, 680C and KDT 680CT
have no input and output channels Ixx.08...15 and
Oxx.08...15. You must therefore rewrite examples that make
use of these channels. There is a process image for the local
inputs and outputs. KUBES modules RD_IN (direct reading
of inputs) and WR_OUT (direct writing into outputs) allow a
direct access by by-passing the process image.

6 - 2

Examples

6.1. Basic functions

6.1.1. AND

Circuit diagram Function diagram Instruction list

L I00.00
A I00.01
= O00.00

6.1.2. OR

Circuit diagram Function diagram Instruction list

L I00.02
O I00.03
= O00.01

6 - 3

Examples

6.1.3. Negation at input

Circuit diagram Function diagram Instruction list

LN I00.04
= O00.02

6.1.4. Negation at output

Circuit diagram Function diagram Instruction list

L I00.05
=N O00.03

6 - 4

Examples

6.1.5. NAND

Circuit diagram Function diagram Instruction list

L I00.06
A I00.07
=N O00.04

6.1.6. NOR

Circuit diagram Function diagram Instruction list

L I00.08
O I00.09
=N O00.05

6 - 5

Examples

6.1.7. XO EXCLUSIVE-OR (non-equivalence)

Circuit diagram Function diagram Instruction list

L I00.10
XO I00.11
= O00.06

6.1.8. XON EXCLUSIVE-NOR (equivalence)

Circuit diagram Function diagram Instruction list

L I00.12
XON I00.13
= O00.07

6 - 6

Examples

6.1.9. Self-locking circuit

Circuit diagram Function diagram Instruction list

L I00.14
O O00.08
AN I00.15
= O00.08

6 - 7

Examples

6.2. Memory functions

6.2.1. With reset dominance

Circuit symbol Instruction list

L I00.00
S O00.09 *)
L I00.01
R O00.09 *)

L M00.00 *)
= O00.09

6.2.2. With set dominance

Circuit symbol Instruction list

L I00.02
R O00.10 *)
L I00.03
S O00.10 *)

*) Please note for KUAX 657P:
This controller works without process image. Using the above
example may therefore lead to a jittering of the output if the set
and reset outputs are pressed at the same time.
Remedy: Store the result in a marker and assign to the output
at the end of the sequence.

6 - 8

Examples

6.3. Combinational circuits

6.3.1. OR-AND circuit

Circuit diagram Function diagram Instruction list

L I00.04
ON I00.05
A I00.06
= O00.11

6.3.2. Parallel circuit to output

Circuit diagram Function diagram Instruction list

LN I00.07
A I00.13
= O00.12
A I00.14
= O00.13

6 - 9

Examples

6.3.3. Network with one output

Circuit diagram Function diagram Instruction list

L I00.15
ON I00.00
A I00.01
O O00.14
AN I00.02
= O00.14

6 - 10

Examples

6.3.4. Network with outputs and markers

Circuit diagram

Instruction list Function diagram

L I00.12
O M00.02
AN I00.13
AN I00.14
= M00.02
L I00.15
O M00.03
AN M00.02
AN I00.14
= M00.03
L M00.02
AN I00.00
= O00.04
LN M00.02
A M00.03
= O00.05

6 - 11

Examples

6.4. S-markers as AND/OR markers

6.4.1. Network with OR marker

Circuit diagram Function diagram

Instruction list

L I00.01
A I00.02
= SM15.15
L I00.03
A I00.04
O SM15.15
= O00.06

In this example, a part result has to be stored temporarily.
Definition: S-marker SM15.15 is basically always used as OR marker. It can
thus always be re-used in other networks.

OR marker = SM15.15

6 - 12

Examples

6.4.2. Network with AND marker

Circuit diagram Function diagram

Instruction list

L I00.05
O I00.06
= SM15.14
L I00.07
O I00.08
A SM15.14
= O00.07

In this example, a part result has to be stored temporarily.
Definition: S-marker SM15.14 is basically always used as AND marker. It can
thus always be re-used in other networks.

AND marker = SM15.14

6 - 13

Examples

6.4.3. Network with multiple use of the OR marker

Circuit diagram Function diagram

Instruction list

L I00.00
A I00.01
= SM15.15 ;set OR marker
L I00.02
A I00.03
O SM15.15
= SM15.14 ;set AND marker
L I00.04
A I00.05
= SM15.15 ;set OR marker
L I00.06
A I00.07
O SM15.15
A SM15.14
= O00.09

6 - 14

Examples

6.5. Circuit conversion

Circuit diagram before Circuit diagram after

Instruction list before Instruction list after

L I00.00 L I00.03
A I00.01 A I00.04
= SM15.14 O I00.02
L I00.02 A I00.00
= SM15.15 A I00.01
L I00.03 = O00.12
A I00.04
O SM15.15
A SM15.14
= O00.12

Circuit conversion leads to a different sequence of commands.
Program generation is thus facilitated as the storing of part re-
sults becomes unnecessary.

6 - 15

Examples

6.6. Special circuits

6.6.1. Current surge relay

Signal course

Instruction list

L I00.00
= PP00.00
L PP00.00
XO O00.00
= O00.00

6 - 16

Examples

6.6.2. Reverse circuit (reverse contactor) with forced halt

Circuit diagram Instruction list *1)
L I00.01 ;right key
O O00.00 ;right contactor
AN O00.01 ;left contactor
AN I00.00 ;halt key *2)

= O00.00 ;right contactor

L I00.02 ;left key
O O00.01 ;left contactor
AN O00.00 ;right contactor
AN I00.00 ;halt key *2)

= O00.01 ;left contactor

6.6.3. Reverse circuit (reverse contactor) without forced halt

Circuit diagram Instruction list *1)
L I00.01 ;right key
O O00.00 ;right contactor
AN I00.02 ;left key
AN O00.01 ;left contactor
AN I00.00 ;halt key *2)
= O00.00 ;right contactor

L I00.02 ;left key
O O00.01 ;left contactor
AN I00.01 ;right key
AN O00.00 ;right contactor
AN I00.00 ;halt key *2)
= O00.01 ;left contactor

*1) As the switching of the outputs is done very quickly we recommend providing a
contactor interlock outside the PLC.
*2) If, for safety reasons, the halt key is already connected as n.c. switch outside the
PLC, an A (AND) has to be programmed here.

6 - 17

Examples

6.7. Pulse edge analysis

The controller has programmable pulses for status change recognition of logical
signals (edge analysis). They can be used for both the positive and the negative
edge.

6.7.1. Programmable pulse with positive edge

Circuit diagram Switching symbol Instruction list

L I00.00
= PP00.00
L PP00.00
= O00.00

Signal course

T = 1 cycle

6 - 18

Examples

6.7.2. Programmable pulse with negative edge

Circuit diagram Switching symbol Instruction list

L I00.01
=N PP00.01
L PP00.01
= O00.01

Signal course

Behaviour of the progr. pulses after switching the controller on

After switching the controller on (or after RESET), the pulse
has to be passed once at a value of 0 as the function cannot be
guaranteed otherwise. Recommendation: Assign a pulse with a
non-remanent marker and then set the input signal after it to
the marker (see example below).

Example with positive pulse
L M00.00
= PP00.00
L I00.00
= M00.00
L PP00.00
= O00.00

T = 1 cycle

6 - 19

Examples

As opposed to the programmable pulses (see above) which are
activated by edge changeovers, the signal status is evaluated in
the two following examples. This causes a different behaviour
when switching the controller on.

6.7.3. Pulse with positive signal

Circuit diagram Switching symbol Instruction list

L I00.02
= SM15.14
AN M00.00
= O00.02
L SM15.14
= M00.00

Signal course

T = 1 cycle

6 - 20

Examples

6.7.4. Pulse with negative signal

Circuit diagram Switching symbol Instruction list

LN I00.03
= SM15.14
AN M00.01
= O00.03
L SM15.14
= M00.01

Signal course

T = 1 cycle

6 - 21

Examples

6.8. Software timers

6.8.1. Impulse at startup

Circuit diagram Switching symbol Instruction list

L I00.01
= PT00.01:135*10ms:P
L PT00.01
= O00.01

Signal course

T= Time preselection (here: 1.35s)

6 - 22

Examples

6.8.2. Impulse of constant length

Circuit diagram Switching symbol Instruction list

L I00.02
O PT00.02
= PT00.02:123*100ms:P
L PT00.02
= O00.02

Signal course

T= Time preselection (here: 12.3s)

6 - 23

Examples

6.8.3. Raising delay

Switching symbol Instruction list

L I00.03
= PT00.03:185*10ms:R
L PT00.03
= O00.03

Signal course

T= Time preselection (here: 1.85s)

6 - 24

Examples

6.8.4. Falling delay

Switching symbol Instruction list

L I00.04
= PT00.04:35*100ms:F
L PT00.04
= O00.04

Signal course

T= Time preselection (here: 3.5s)

6 - 25

Examples

6.8.5. Impulse generator with pulse output

Switching symbol Instruction list

L I00.05
AN O00.05
= PT00.05:55*10ms:R
L PT00.05
= O00.05

Signal course

T1= Time preselection (here: 0.55s)
T2= Cycle time

6 - 26

Examples

6.8.6. Flash generator with one timer

Switching symbol Instruction list

L I00.06
= PT00.06:50*10ms:C
L PT00.06
= O00.06

Signal course

T= Time preselection (here: 0.50s), Flash frequency = 1 Hz

6 - 27

Examples

6.8.7. Flash generator with two timers

Switching symbol Instruction list

L I00.00
AN PT00.02
= PT00.01:5*100ms:P
L PT00.01
= O00.00
LN PT00.01
= PT00.02:10*100ms:P

Signal course

T1= Time preselection for switch-on (here: 500ms=0.5s)
T2= Time preselection for switch-off (here: 1,000ms=1s)

6 - 28

Examples

6.9. Programmable clock

Apart from the software timers, there are four programmable
clock pulses available in the operands PC00.00 - PC00.03:

Operand Clock pulse Range

T00.00 10 ms

0-255
T00.01 100 ms

T00.02 1 s

T00.03 10 s

Each of these operands is automatically incremented in the
stated clock pulse. At 255, the next clock pulse causes a carry
to 0.

Example for an application: Each part of the program is supposed to be passed
only every 100 ms.

P1_STA L PC00.01 ;is 100 ms clock pulse memory
CMP BM03.14 ; equal to the old value?
JP= P1_END ;go to end of program if so
= BM03.14 ; otherwise new = old
.
. ;this program is only
. ; passed every 100 ms
.
.
LN O01.03 ;program for flash
= O01.03 ; generator 100 ms
.
.

P1_END .

at L PC00.01
= SM00.10

the logical status of SM00.10 changes every 128 * 100 ms as
bit 7 of PC00.01 is evaluated for the output of SM00.10.

6 - 29

Examples

6.10. Software counters

Example: Forward counter to 12

L I00.00 ;start counter
= C00.00:12:F

L I00.01 ;count (transfer clock pulse)
=C C00.00

L C00.00 ;scanning "Count completed”
= A00.12

LD C00.00 ;scan actual value
=D BM00.00

6 - 30

Examples

6.11. Programming an operational sequence

Use the path-step diagram below to program a step chain (also
called sequential function chart).

We will suggest two solutions:

6.11.1 Step chain with step markers

For this program solution you set a marker for every step of the
program. The markers are cleared only at the end of the pro-
gram and the step chain released for a new processing cycle.

6 - 31

Examples

L I00.00 ;Start
A I00.01 ;Limit switch a0
A I00.03 ;Limit switch b0
A I00.05 ;Limit switch c0
AN SM00.01 ;Step 1
S SM00.01 ;Step 1
S O00.00 ;Cylinder A+

L I00.02 ;Limit switch a1
A SM00.01 ;Step 1
AN SM00.02 ;Step 2
S SM00.02 ;Step 2
S O00.01 ;Cylinder B+

L I00.04 ;Limit switch b1
A SM00.02 ;Step 2
AN SM00.03 ;Step 3
S SM00.03 ;Step 3
R O00.00 ;Cylinder A-
S O00.02 ;Cylinder C+

L I00.01 ;Limit switch a0
A I00.06 ;Limit switch c1
A SM00.03 ;Step 3
AN SM00.04 ;Step 4
S SM00.04 ;Step 4
S O00.00 ;Cylinder A+
R O00.01 ;Cylinder B-

L I00.02 ;Limit switch a1
A I00.03 ;Limit switch b0
A SM00.04 ;Step 4
AN SM00.05 ;Step 5
S SM00.05 ;Step 5
R O00.00 ;Cylinder A-
R O00.02 ;Cylinder C-

L I00.01 ;Limit switch a0
A I00.05 ;Limit switch c0
A SM00.05 ;Step 5
R SM00.01 ;Step 1
R SM00.02 ;Step 2
R SM00.03 ;Step 3
R SM00.04 ;Step 4
R SM00.05 ;Step 5

Function diagram Program

6 - 32

Examples

6.11.2. Step chain with automatic status registration

This program solution is based on a byte operand that is used
as step counter. Jump instructions are used to branch to the step
that is currently active. Once the condition for the next step is
fulfilled, the step counter is incremented by 1. When the last
step has been completed, the step counter is cleared and the
step chain is ready for the next processing cycle.

Program:

; Read step counter -> jump to next current step
 L STEP_CNT BM00.00 ; (step counter)
 CMP 0
 JP= STEP_0 ; jump to step no. 0
 CMP 1
 JP= STEP_1 ; jump to step no. 1
 CMP 2
 JP= STEP_2 ; jump to step no 2
 CMP 3
 JP= STEP_3 ; jump to step no 3
 CMP 4
 JP= STEP_4 ; jump to step no 4
 CMP 5
 JP= STEP_5 ; jump to step no 5
 CMP 6
 JP= STEP_6 ; jump to step no 6
 JP END

; Step chain
STEP_0 L START I00.00 ; (start key)
 A A0 I00.01 ; (limit switch A0)
 A B0 I00.03 ; (limit switch B0)
 A C0 I00.05 ; (limit switch C0)
 JPCN END ; start condition fulfilled?
 INC STEP_CNT BM00.00 ; (step counter)
 JP END

6 - 33

Examples

STEP_1 =1 CYL_A O00.00 ; (cylinder A)
 L A1 I00.02 ; (limit switch A1)
 JPCN END ; condition for step fulfilled?
 INC STEP_CNT BM00.00 ; (step counter)
 JP END
STEP_2 =1 CYL_B O00.01 ; (cylinder B)
 L B1 I00.04 ; (limit switch B1)
 JPCN END ; condition for step fulfilled?
 INC STEP_CNT BM00.00 ; (step counter)
 JP END

STEP_3 =0 CYL_A O00.00 ; (cylinder A)
 =1 CYL_C O00.02 ; (cylinder C)
 L A0 I00.01 ; (limit switch A0)
 A C1 I00.06 ; (limit switch C1)
 JPCN END ; condition for step fulfilled?
 INC STEP_CNT BM00.00 ; (step counter)
 JP END

STEP_4 =1 CYL_A O00.00 ; (cylinder A)
 =0 CYL_B O00.01 ; (cylinder B)
 L A1 I00.02 ; (limit switch A1)
 A B0 I00.03 ; (limit switch B0)
 JPCN END ; condition for step fulfilled?
 INC STEP_CNT BM00.00 ; (step counter)
 JP END

STEP_5 =0 CYL_A O00.00 ; (cylinder A)
 =0 CYL_C O00.02 ; (cylinder C)
 L A0 I00.01 ; (limit switch A0)
 A C0 I00.05 ; (limit switch C0)
 JPCN END ; condition for step fulfilled?
 INC STEP_CNT BM00.00 ; (step counter)
 JP END

STEP_6 CLR STEP_CNT BM00.00 ; (step counter)

END NOP

6 - 34

Examples

6 - 35

 Examples

6.12. Register circuits

6.12.1. 1bit shift register

In this example, the shift register is 6 steps long. The signal input is shifted from
O00.01 to O00.06 when the shift clock pulse is applied from I00.00.

I00.01 SI
I00.00 PC SO.1 O00.01

SO.2 O00.02
 : :

SO.n O00.06

 1bit
 shift reg.

Instruction list

L I00.00 ;shift clock pulse
= PP00.00 ;pulse
L PP00.00 ;pulse
JPCN NORM ;to normal program if no
L O00.05 ;step 5
= O00.06 ;step 6
L O00.04 ;step 4
= O00.05 ;step 5
L O00.03 ;step 3
= O00.04 ;step 4
L O00.02 ;step 2
= O00.03 ;step 3
L O00.01 ;step 1
= O00.02 ;step 2

L I00.01 ;signal input
= O00.01 ;step 1

NORM :
: ;normal program

SI: signal input I00.01
PC: shift clock pulse I00.00
SO.1: signal output 1 O00.01
SO.2: signal output 2 O00.02
: : :
SO.n: signal output n O00.06

6 - 36

Examples

6.12.2. 8bit shift register

In this example, the shift register is 6 steps long. The set information is shifted
from BM00.00 to BM00.06 when the shift clock pulse is applied from I00.00.

BM00.00 SI
I00.00 PC SO.1 BM00.01

SO.2 BM00.02
 : :

SO.n BM00.06

8bit
shift reg.

Instruction list

L I00.00 ;shift clock pulse
= PP00.00 ;pulse
L PP00.00 ;pulse
JPCN NORM ;to normal program if no
L BM00.05 ;step 5
= BM00.06 ;step 6
L BM00.04 ;step 4
= BM00.05 ;step 5
L BM00.03 ;step 3
= BM00.04 ;step 4
L BM00.02 ;step 2
= BM00.03 ;step 3
L BM00.01 ;step 1
= BM00.02 ;step 2

L BM00.00 ;signal input
= BM00.01 ;step 1

NORM NOP
: ;normal program
:

SI: signal input BM00.01
PC: shift clock pulse I00.00
SO.1: signal output 1 BM00.01
SO.2: signal output 2 BM00.02
: : :
SO.n: signal output n BM00.06

6 - 37

 Examples

6.13. Bit-to-byte transfer

It is possible to transfer the contents of 8 or 16 1bit operands into byte operands
in two operations. In the same way, the contents of byte operands can be copied
directly into the 1bit range.

Example: To copy eight 1bit operands into one byteExample: To copy eight 1bit operands into one byteExample: To copy eight 1bit operands into one byteExample: To copy eight 1bit operands into one byteExample: To copy eight 1bit operands into one byte

C1T8 I00.00 ;copy contents of I00.00-I00.07 into the accumulator
= BM00.00 ;assign contents of the accumulator to BM00.00

Example: To copy one byte into eight 1bit operandsExample: To copy one byte into eight 1bit operandsExample: To copy one byte into eight 1bit operandsExample: To copy one byte into eight 1bit operandsExample: To copy one byte into eight 1bit operands

L BM00.01 ;load contents of BM00.01 into the accumulator
C8T1 O00.03 ;copy contents of the accu into operands O00.03-O00.10

Example: To copy sixteen 1bit operands into two bytesExample: To copy sixteen 1bit operands into two bytesExample: To copy sixteen 1bit operands into two bytesExample: To copy sixteen 1bit operands into two bytesExample: To copy sixteen 1bit operands into two bytes

C1T16 I01.00 ;load contents of I01.00-I01.15 into the accumulator
=D BM00.02 ;copy contents of the accumulator into BM00.02-BM00.03

;(I01.00-I01.07 into BM00.02, I01.08-I01.15 into BM00.03)

Example: To copy two bytes into sixteen 1bit operandsExample: To copy two bytes into sixteen 1bit operandsExample: To copy two bytes into sixteen 1bit operandsExample: To copy two bytes into sixteen 1bit operandsExample: To copy two bytes into sixteen 1bit operands

LD BM00.04 ;load contents of BM00.04-BM00.05 into the accumulator
C16T1 O00.00 ;copy contents of the accu into the address O00.00-O00.15

;(BM00.04 into O00.00-O00.07,BM00.05 into O00.08-O00.15)

6 - 38

Examples

V1: comparison value 1 BM00.00
V2: comparison value 2 BM00.01
CO: comparator output O00.00

6.14. Comparator circuits

6.14.1. 8bit comparator

6.14.1.1. Result of the comparison: logical evaluation

The result of the comparison is evaluated as logical 1 or logical
0 by an assignment:

BM00.00 V1
BM00.01 V2 CO O00.00

8bit
comparator
V1 >= V2

Program

L BM00.00 ;compare V1 to V2
CMP>= BM00.01 ; whether greater or equal *1)
= O00.00 ;CA (becomes "1" if V1 is greater or equal, or

otherwise "0")

*1) further commands are: CMP=, CMP<>, CMP<=

6 - 39

 Examples

6.14.1.2. Result of the comparison: evaluation with one jump

The result of the comparison is evaluated as a conditional
jump, i.e. the jump is carried out if the result is "correct":

L BM00.00
CMP BM00.01
JP>= MARK *2)

*2) further commands are: JP=, JP<>, JP<, JP<=, JP>

6 - 40

Examples

6.14.2. 16bit comparator

6.14.2.1. Result of the comparison: logical evaluation

The result of the comparison is as logical 1 or logical 0 in the
accu and can be evaluated for example by an assignment.

BM00.00 V1
BM00.02 V2 CO O00.00

 16bit
 comparator

V1 >= V2

Program

LD BM00.00 ;compare V1 to V2
CMPD BM00.01 ; whether "greater or equal" *1)
= O00.00 ;CA (is set if V1 is greater or equal)

*1) further commands are: CMPD=, CMPD<>, CMPD<=

6.14.2.2. Result of the comparison: evaluation with one jump

The result of the comparison is evaluated as a conditional
jump, i.e. the jump is carried out if the result is "correct":

LD BM00.00
CMPD BM00.01
JP>= MARK *2)

*2) further commands are: JP=, JP<>, JP<, JP<=, JP>

V1: comparison value 1
BM00.00+BM00.01

V2: comparison value 2
BM00.02+BM00.03

CO: comparator output O00.00

6 - 41

 Examples

6.15. Arithmetic functions

6.15.1. Binary 8bit adder

BM00.00 Z1

BM00.01 Z2 Z3 BM00.02

 binary
 8bit
 adder

Program

L BM00.00 ;Z1 1st summand
ADD BM00.01 ;Z2 2nd summand
= BM00.02 ;Z3 sum

In case of a carry, the carry bit is set.

6.15.2. Binary 16bit adder

BM00.01 Z1

BM00.03 Z2 Z3 BM00.05

 binary
 16bit
 adder

Program

LD BM00.00 ;Z1 1st summand
ADDD BM00.02 ;Z2 2nd summand
=D BM00.04 ;Z3 sum

In case of a carry, the carry bit is set.

Z1: 1st summand 8bit 0-255 ($FF)
BM00.00

Z2: 2nd summand 8bit 0-255 ($FF)
BM00.01

Z3: sum 8bit 0-255 ($FF)
BM00.02

Z1: 1st summand 16bit 0-65535 ($FFFF)
BM00.01(HB)+BM00.00(LB)

Z2: 2nd summ. 16bit0-65535 ($FFFF)
BM00.03(HB)+BM00.02(LB)

Z3: sum 16bit 0-65535 ($FFFF)
BM00.05(HB)+BM00.04(LB)

6 - 42

Examples

6.15.3. 8bit BCD adder

BM00.00 Z1

BM00.01 Z2 Z3 BM00.02

8bit
BCD
adder

Program

****** BCD correction ******************************

CLR LBM00.01 ;marker for BCD correction
L BM00.00 ;Z1 1st summand
A %00001111 ;extract upper 4 bits
= LBM00.00 ;1st decade of this
L BM00.01 ;Z2 2nd summand
A %00001111 ;1st decade of this
ADD LBM00.00
CMP 10 ;BCD correction necessary?
JP< ADDIT ;jump if not
L 6 ;load correction
= LBM00.01 ;value if yes

****** Addition ***********************************

ADDIT L LBM00.01
ADD BM00.00 ;Z1 1st summand
ADD BM00.01 ;Z2 2nd summand
= BM00.02 ;Z3 sum

Z1: 1st summand 8bit 0-99
BM00.00

Z2: 2nd summand 8bit 0-99
BM00.01

Z3: sum 8bit 0-99
BM00.02

6 - 43

 Examples

6.15.4. Binary 8bit subtractor

BM00.00 Z1

BM00.01 Z2 Z3 BM00.02

binary
8bit
subtractor

Z3 becomes negative and is filed as two’s complement if Z2 >
Z1. Further evaluation of Z3 has to take this into account.

Program

L BM00.00 ;Z1 minuend
SUB BM00.01 ;Z2 subtrahend
= BM00.02 ;Z3 difference

6.15.5. Binary 16bit subtractor

BM00.01 Z1

BM00.03 Z2 Z3 BM00.05

 binary
 16bit
 subtractor

Program

LD BM00.00 ;Z1 minuend
SUBD BM00.02 ;Z2 subtrahend
=D BM00.04 ;Z3 difference

Z1: 1st minuend 16bit 0-65535 ($FFFF)
BM00.01(HB)+BM00.00(LB)

Z2: 2nd subtrahend 16bit 0-65535 ($FFFF)
BM00.03(HB)+BM00.02(LB)

Z3: difference 16bit 0-65535 ($FFFF)
BM00.05(HB)+BM00.04(LB)

Z1: minuend 8bit 0-255 ($FF)
BM00.00

Z2: subtrahend 8bit 0-255 ($FF)
BM00.01

Z3: difference 8bit 0-255 ($FF)
BM00.02

6 - 44

Examples

6.15.6. 8bit BCD subtractor

BM00.00 Z1

BM00.01 Z2 Z3 BM00.02

 8bit
 BCD
 subtractor

Program

****** BCD correction ******************************

L BM00.00 ;Z1 minuend
A %00001111 ;mask upper 4 bits
= LBM00.00 ;1st decade of this
L BM00.01 ;Z2 subtrahend
A %00001111 ;1st decade of this
CMP LBM00.00 ;BCD correction necessary?
JP<= SUBTR ;jump if not
L BM00.01 ;load correction
ADD 6 ;value if yes
= BM00.01

****** Subtraction ***********************************

SUBTR L BM00.00 ;Z1 minuend
SUB BM00.01 ;Z1 subtrahend
= BM00.02 ;Z3 difference

Z1: minuend 8bit 0-99
BM00.00

Z2: subtrahend 8bit 0-99
BM00.01

Z3: difference 8bit 0-99
BM00.02

6 - 45

 Examples

6.15.7. Binary 8bit multiplier

BM00.00 Z1

BM00.01 Z2 Z3 BM00.02

 binary
 8/16bit
 multiplier

Program
L BM00.00 ;Z1 multiplicand
MUL BM00.01 ;Z2 multiplier
=D BM00.02 ;Z3 product (16bit)

6.15.8. Binary 16bit multiplier

BM00.00 Z1

BM00.02 Z2 Z3 BM

 binary
 16bit
 multiplier

Program

LD BM00.00 ;Z1 multiplicand
MULD BM00.02 ;Z2 multiplier
=D BM00.04 ;Z3 product

Z1: multiplicand 8bit 0-255 ($FF)
BM00.00

Z2: multiplier 8bit 0-255 ($FF)
BM00.01

Z3: product 16bit 0-65025 ($FE01)
BM00.03(HB)+BM00.02(LB)

Z1: multiplicand 16bit 0-65535 ($FFFF)
BM00.01(HB)+BM00.00(LB)

Z2: multiplier 16bit 0-65535 ($FFFF)
BM00.03(HB)+BM00.02(LB)

Z3: product 16bit 0-65535 ($FFFF)
BM00.05(HB)+BM00.04(LB)

6 - 46

Examples

6.15.9. Binary 8bit divider

BM00.00 Z1

BM00.01 Z2 Z3 BM00.02

binary
8bit
divider

Program

L BM00.00 ;Z1 dividend
DIV BM00.01 ;Z2 divisor
=D BM00.02 ;Z3 quotient

6.15.10. Binary 16bit divider

BM00.00 Z1

BM00.02 Z2 Z3 BM00.04

binary
16bit
divider

Program

LD BM00.00 ;Z1 dividend
DIVD BM00.02 ;Z2 divisor
=D BM00.04 ;Z3 quotient

The calculated quotient is integer. The remainder can be determined as follows:
LD BM00.04 ;Z3 quotient
MULD BM00.02 ;Z2 divisor
=D LBM00.00 ;Z3 (whole number!) * Z2
LD BM00.00 ;Z1 dividend
SUBD LBM00.00
=D BM00.06 ;remainder

Z1: dividend 8bit 0-255 ($FF)
BM00.00

Z2: divisor 8bit 0-255 ($FF)
BM00.01

Z3: quotient 8bit 0-255 ($FF)
BM00.02

Z1: dividend 16bit 0-65535 ($FFFF)
BM00.01(HB)+BM00.00(LB)

Z2: divisor 16bit 0-65535 ($FFFF)
BM00.03(HB)+BM00.02(LB)

Z3: quotient 16bit 0-65535 ($FFFF)
BM00.05(HB)+BM00.04(LB)

6 - 47

 Examples

6.16. Code converters

6.16.1. 8bit BCD-to-binary converter

BM00.00 BCD

binary BM00.01

8bit BCD-
 to-binary
 converter

Program

L BM00.00 ;load BCD value
LSR ;shift
LSR ; tens
LSR ; to
LSR ; digits
MUL 10 ;multiply
= BM00.01 ;store temporarily
L BM00.00 ;load BCD value
A %00001111 ;mask tens
ADD BM00.01 ;add binary tens
= BM00.01 ;store binary value

BCD: 8bit 0-99 BM00.00
binary: 8bit 0-99 ($63)BM00.01

6 - 48

Examples

6.16.2. 8bit binary-to-BCD converter

BM00.00 binary

 BCD BM00.01

8bit bin.-
to-BCD
converter

Program

L BM00.00 ;load binary value
DIV 10 ;determine and
= LBM00.00 ;mark tens
MUL 10 ;calculate and mark down
= LBM00.01 ;integer tens value
L BM00.00
SUB LBM00.01 ;determine and
= LBM00.01 ;mark units
L LBM00.00 ;shift
LSL ; tens
LSL ; into the
LSL ; upper
LSL ; nibble
O LBM00.01 ;pack and output
= BM00.01 ; BCD value

binary: 8bit 0-99 ($63)BM00.00
BCD: 8bit 0-99 BM00.01

6 - 49

 Examples

6.16.3. 16bit BCD-to-binary converter

BM00.00 BCD

Binary BM00.02

16bit BCD-
to-binary
converter

Program

CLR BM00.03 ;clear because of LD BM00.02
CLR LBM00.03 ;clear because of LD LBM00.02
L BM00.00 ;separate units decade
A %00001111
= BM00.02 ;binary units
L BM00.00 ;separate tens decade
LSR
LSR
LSR
LSR ;binary tens
MUL 10
ADD BM00.02
= BM00.02 ;units+tens
L BM00.01 ;separate hundreds decade
A %00001111
= LBM00.02 ;binary hundreds
LD LBM00.02 ;the same as word
MULD 100
ADDD BM00.02
=D BM00.02 ;units+tens+hundreds
L BM00.01 ;separate thousands decade
LSR
LSR
LSR
LSR
= LBM00.02 ;binary thousands
LD LBM00.02 ;the same as word
MULD 1000
ADDD BM00.02
=D BM00.02 ;complete binary value

BCD: 16bit 0-9999
BM00.01(HB)+BM00.00(LB)

binary: 16bit 0-9999 ($270F)
BM00.03(HB)+BM00.02(LB)

6 - 50

Examples

6.16.4. 16bit binary-to-BCD converter

BM00.00 Binary

 BCD BM00.02

16bit bin.-
to-BCD
converter

Program

CLR BM00.02 ;set to zero
CLR BM00.03 ;ditto

THOU1 LD BM00.00 ;load binary value
CMPD 1000
JP< THOU2 ;smaller than a thousand?
SUBD 1000 ;subtract 1000 if yes
=D BM00.00
INC BM00.03 ;count subtraction steps
JP THOU1 ;back to enquiry

THOU2 L BM00.03 ;shift thousands
LSL ; into the upper
LSL ; nibble of the
LSL ; highbyte of the
LSL ; BCD output if no
= BM00.03 ;prepare highbyte

HUND LD BM00.00 ;remainder of binary value (thousands excl.)
CMPD 100
JP< TEN1 ;smaller than a hundred?
SUBD 100 ;subtract 100 if yes
=D BM00.00
INC BM00.03 ;count subtraction steps (in the lower nibble

; of the highbyte of the BCD output)
JP HUND ;back to enquiry

TEN1 L BM00.00 ;remainder of binary value (hundreds excl.)
CMP 10
JP< TEN2 ;smaller than ten?
SUB 10 ;subtract 10 if yes
= BM00.00

Binary: 16bit 0-9999 ($270F)
BM00.01(HB)+BM00.00(LB)

BCD: 16bit 0-9999
BM00.03(HB)+BM00.02(LB)

6 - 51

 Examples

INC BM00.02 ;count subtraction steps
JP TEN1 ;back to enquiry

TEN2 L BM00.02 ;shift tens to the
LSL ; upper nibble of the
LSL ; lowbyte of the
LSL ; BCD output
LSL ; if no
ADD BM00.00 ;units remainder into the lower nibble
= BM00.02 ;output from the lowbyte

6.16.5. 3 decade BCD-to-binary converter

BM00.00 BCD

Binary BM00.02

3 decade
BCD/binary
converter

Program

LD BM00.00 ;load BCD value
BCDBIN3
=D BM00.02 ;output binary value

If there are 3-decade BCD values to be calculated with arith-
metically, we recommend first converting these into binary val-
ues by use of command BCDBIN3 and then executing the arith-
metic operations with binary values.

BCD: 16bit 0-999
BM00.01(HB)+BM00.00(LB)

binary: 16bit 0-999 ($03E7)
BM00.03(HB)+BM00.02(LB)

6 - 52

Examples

6.16.6. 3 decade binary-to-BCD converter

BM00.00 Binary

 BCD BM00.02

3 decade
 bin.-to-BCD

converter

Program

LD BM00.00 ;load binary value
BINBCD3
=D BM00.02 ;output BCD value

6.16.7. 10bit analog-to-binary conversion

Analog values in the KUBES format require 16bit operands.
The actual analog value is not flush in the 16bit word.
Before you can calculate analog values or compare them to bi-
nary values you have to shift them right within the word.

In the case of 10bit analog values you need a shift by 5 digits:

Program

LD AI00.00 ;analog input
LSRD ;logical shift right
LSRD
LSRD
LSRD
LSRD
=D BM00.00 ;write into byte marker as binary value

binary: 16bit 0-999 ($03E7)
 BM00.01(HB)+BM00.00(LB)

BCD: 16bit 0-999
 BM00.03(HB)+BM00.02(LB)

6 - 53

 Examples

6.17. Module programming

Task (example):

Sets of 12 pieces each are to be transported on a conveyor belt.
The drive of the belt is operated by start and stop keys. The
belt is stopped after every twelfth piece. Before leaving the
belt, each piece triggers an impulse via an initiator which is
used for counting.

A 3-digit BCD display is supposed to show:

- while the belt is running:
- the current piece number in the set (0...12)
- permanently:
- the sum total of pieces transported already (0...999)

You should be able to set the counter to zero via a cancel key.

The overall program is realized by a practical dividing it up
into separate modules (see next page for a program printout):

 ORG PRG "ONOFF"

PRG "COUNTER" PRG "SUM"

PRG "NEW"

PRG "CURNUM"

PRG "DISPLAY"

PRG "SUMNUM"

6 - 54

Examples

Printout of program listing

======== Kubes ===================================== KUAX 680C =======
 Project structureProject structureProject structureProject structureProject structure

Project : E205GB
created : Nov 19 1991 09:42

User : Kevin Kubes altered : Nov 21 1991 08:17
Comment : Example "Module programming”
==

ORG.ORG/1
|
*———>ONOFF.PRO/1
|
*———>COUNTER.PRO/2
| |
| *———>SUM.PRO/5
| |
| *———>NEW.PRO/6
|
*———>CURNUM.PRO/3
| |
| *———>DISPLAY.PRO/7
|
*———>SUMNUM.PRO/4
 |
 *———>DISPLAY.PRO/7

6 - 55

 Examples

======== Kubes ===================================== KUAX 680C ======
 Organisation moduleOrganisation moduleOrganisation moduleOrganisation moduleOrganisation module IL

Project : E205GB
Module : ORGORGORGORGORG No.: 1 created : Nov 26 1991 16:08
User : KUBES altered : Nov 26 1991 16:08

==

 1: JPP ONOFF 1
 2:
 3: JPP COUNTER 2
 4:
 5: L MOTOR O00.00 ; (motor conveyor belt)
 6: JPCP CURNUM 3
 7:
 8: LN MOTOR O00.00 ; (motor conveyor belt)
 9: JPCP SUMNUM 4
 10:

======== Kubes ===================================== KUAX 680C =======
 Program moduleProgram moduleProgram moduleProgram moduleProgram module IL

Project : E205GB
Module : DISPLAYDISPLAYDISPLAYDISPLAYDISPLAY No.: 7 created : Nov 26 1991 16:20
User : Kevin Kubes altered : Nov 26 1991 16:20
Comment : DISPLAY
==

 1: LD BM00.02
 2: BINBCD3
 3: C16T1 UNITS SO00.00 ; (display "digits”)
 4:

6 - 56

Examples

======== Kubes ===================================== KUAX 680C =======
 Program moduleProgram moduleProgram moduleProgram moduleProgram module IL

Project : E205GB
Module : CURNUM CURNUM CURNUM CURNUM CURNUM No.: 3 created: Nov 26 1991 16:20
User : Kevin Kubes altered: Nov 26 1991 16:20
Comment : CURNUM
==

 1: LD COUNTER C00.00 ; (piece counter)
 2: =D BM00.02
 3: JPP DISPLAY 7
 4:

======== Kubes ===================================== KUAX 680C =======
 Program moduleProgram moduleProgram moduleProgram moduleProgram module IL

Project : E205GB
Module : SUMNUMSUMNUMSUMNUMSUMNUMSUMNUM No.: 4 created : Nov 26 1991 16:22
User : Kevin Kubes altered : Nov 26 1991 16:22
Comment : SUMNUM
==

 1: LD SUM BM00.00 ; (current piece number)
 2: =D BM00.02
 3: JPP DISPLAY 7
 4:

6 - 57

 Examples

======== Kubes ===================================== KUAX 680C =======
 Program moduleProgram moduleProgram moduleProgram moduleProgram module IL

Project : E205GB
Module : ONOFFONOFFONOFFONOFFONOFF No.: 1 created : Nov 26 1991 16:12
User : Kevin Kubes altered : Nov 26 1991 16:12
Comment : ONOFF
==

 1: L START I00.00 ; (start motor)
 2: S IOMARKER M00.00 ; (marker motor ON/OFF)
 3: L STOP I00.01 ; (stop motor)
 4: ON READY M00.01
 5: O DONE M00.02 ; (12 pieces counted)
 6: R IOMARKER M00.00 ; (marker motor ON/OFF)
 7: L IOMARKER M00.00 ; (marker motor ON/OFF)
 8: = MOTOR O00.00 ; (motor conveyor belt)
 9:

======== Kubes ===================================== KUAX 680C =======
 Program moduleProgram moduleProgram moduleProgram moduleProgram module IL

Project : E205GB
Module : NEWNEWNEWNEWNEW No.: 6 created : Nov 26 1991 16:19
User : Kevin Kubes altered : Nov 26 1991 16:19
Comment : NEW
==

 1: LD 0
 2: =D SUM BM00.00 ; (current piece number)
 3:

6 - 58

Examples

======== Kubes ===================================== KUAX 680C =======
 Program module Program module Program module Program module Program module IL

Project : E205GB
Module : SUM SUM SUM SUM SUM No.: 5 created : Nov 26 1991 16:18
User : Kevin Kubes altered: Nov 26 1991 16:18
Comment : SUM
==

 1: LD COUNTER C00.00 ; (piece counter)
 2: ADDD SUM BM00.00 ; (current piece number)
 3: =D SUM BM00.00 ; (current piece number)
 4:

======== Kubes ===================================== KUAX 680C =======
 Program module Program module Program module Program module Program module IL

Project : E205GB
Module : COUNTERCOUNTERCOUNTERCOUNTERCOUNTER No.: 2 created : Nov 26 1991 16:15
User : Kevin Kubes altered : Nov 26 1991 16:15
Comment : COUNTER
==

 1: L COUNTER C00.00 ; (piece counter)
 2: O STOP I00.01 ; (motor off)
 3: = PULSE PP00.00
 4: L PULSE PP00.00
 5: JPCP SUM 5
 6: L IOMARKER M00.00 ; (marker motor ON/OFF)
 7: = COUNTER:12:V C00.00 ; (piece counter)
 8: L CIMP I00.02 ; (counting pulse of the initiator)
 9: =C COUNTER C00.00 ; (piece counter)
 10: L CANCEL I00.03 ; (key "clear counter”)
 11: JPCP NEW 6
 12:

 6 - 59

 Examples

6.18. Data modules

6.18.1. Creating data modules offline

Many PLC applications require text management for displays,
operating terminals etc. The texts can be written with a simple
text editor that uses no control characters. Windows, in its Ac-
cessories group, provides NOTEPAD.EXE for such purposes.

6.18.1.1. Creating a data file with the text editor

- At a suitable location, create a sub-directory for your collec-
tion of data modules (in this case: C:\KUBESEXE\DATA).

- Start text editor NOTEPAD.EXE by double-clicking on its
program icon.

- Write the following text without word wrapping (by pressing
<Enter>):
If on the manure the cock does crow, the
weather stays calm or a strong gale will
blow.

- Save File, set path to
C:\KUBESEXE\DATA, filename WEATHER.DAT

6 - 60

Examples

6.18.1.2. Creating the data module

- KUBES, Module Editor, Create Module: data module called
WEATHER and no.1, OK.
The Create Data Module dialog is displayed.

- Specify a data range address in the 'RAM module' section:
Bank number:0
Start address:8000
(Remember later when setting the memory size under
KUBES!)

- In the Initialized section click on 'from file'
The Open File dialog is displayed
Select C:\KUBESEXE\DATA\WEATHER.DAT, OK. The
Open File dialog is closed
The Create Data Module dialog is now set to initialization
from WEATHER.DAT, OK. Execution is confirmed by 2 mes-
sages:
1st message:
File is smaller than data module. Filled with 0.
2nd message:
Data module successfully created: WEATHER.

 6 - 61

 Examples

6.18.1.3. Importing a data module

If a data module already exists in your project, you can import
data from a data file into the data module. The process is simi-
lar to the initial creation of the corresponding data module.

- KUBES, Module Editor, Module menu, Import data module
The Import Data Module dialog is displayed.

- In the RAM Module section check the data range address:
Bank number:0
Start address:8000
(Remember later when setting the memory size under
KUBES!)

- Click on Select Source File
The Open File dialog is displayed
Select C:\KUBESEXE\DATA\WEATHER.DAT, OK. The
Open File dialog is closed
The Create Data Module dialog is now set to the initializa-
tion from WEATHER.DAT, OK. Execution is confirmed by 1
message:
1st message:
File is smaller than data module. Filled with 0.

6 - 62

Examples

6.18.1.4. Testing the data module

- KUBES, Module Editor, Load Module: ORG
Write down the program line:
LoadDB 0,WEATHER
This loads data module WEATHER into data processing
range 0.

- KUBES, PLC, Online (depending on interface and PLC type)

- KUBES, PLC, Stop and Reset:

- KUBES, PLC, Set memory size:
Bank 0: 52 kB,data range remains empty.
Bank 1: 0 kB, data range $0000 - $FFFF appears.

- KUBES, PLC, Transmit Program:
The dialog 'Select data modules for transmitting' is displayed
Select data module WEATHER in section 'Data modules in
the project', accept. Highlight data module WEATHER in
section 'Data modules to be transmitted', OK
The project and all data modules are now transmitted to the
controller.

- KUBES, PLC, Start:

- KUBES, PLC, Display address range, Select: Byte marker
DB0, Display ASCII, Dynamic display:

The following should now be displayed on your screen.

see next page

 6 - 63

 Examples

6 - 64

Examples

6.18.2. Creating data modules online

6.18.2.1. Creating a data module

- KUBES, Module Editor, Create Module: Data module called
TEST and No.2, OK.
The Create Data Module dialog is displayed.

- Input data range address in the RAM Module section:
Bank number:0
Start address:8100
(Remember later when setting the memory size under
KUBES!)

- In section 'initialized' click on By Zero, OK. Execution is
confirmed by one message:
1st message: Data module successfully created: TEST.

6.18.2.2. Editing data modules in the display address range

- KUBES, Module Editor, Load Module: ORG
Write down the program line:
StoreDB 1,TEST
This loads data processing range 1 into data module TEST.

- KUBES, PLC, ONLINE (depending on interface and PLC
type)

- KUBES, PLC, Stop and Reset:

KUBES, PLC, Set memory size:
Bank 0: 52 kB, data area remains empty.
Bank1: 0 kB, data range $0000 - $FFFF appears.

 6 - 65

 Examples

- KUBES, PLC, Transmit program:
The dialog 'Select data modules for transmitting' is displayed
Select data module TEST in section 'Data modules in the
project', accept. Select data module TEST in section 'Data
modules to be transmitted', OK.
The project and all data modules is transmitted to the con-
troller.

- KUBES, PLC, Start:

- KUBES, PLC, Display address range, Select: Byte marker
DB1, Display decimal, dynamic off:
Input 0,ENTER;1,ENTER;2,ENTER;... into addresses
DB100.00...DB100.15.

The following should now be displayed on your screen.

Command StoreDB 1,TEST writes the contents of data
processing range DB1 in the PLC into data module TEST.

6 - 66

Examples

6.18.2.3. Loading data modules from the PLC

If you want to take over the contents of data module TEST you
just created into the project, you have to download it from the
controller

- KUBES, PLC online, Module Editor, PLC, Load data module
The Load Data Module dialog is displayed.

- Select TEST, load.
You are prompted: Target module already exists. Overwrite?

- Yes. Now data module TEST in the project has the edited
contents. If you now remove command
’StoreDB 1,TEST ’ from the program, data module
TEST will remain unchanged in the PLC even after the next
program transmissions.

 6 - 67

 Examples

6.18.2.4. Exporting data modules

If you want to archive a data module, make it available for
other projects, or document its contents, it is also possible to
export it.

- KUBES, Module Editor, Module, Export data module
The Export Data Module dialog is displayed
To select a data module: highlight TEST
Click on destination file to select, the Save File As dialog is
displayed.
Set path to C:\KUBESEXE\DATA, input ‘TEST.DAT, OK.
The Save Fiel As dialog is closed, and the Export Data Mod-
ule dialog redisplayed, export.

- It is not possible to view file TEST.DAT with a text editor as
only values 0...15 are contained. However, you can use DOS
program debug.exe, for example, for viewing.
• debug C:\KUBESEXE\DATA\ , ENTER
• d , ENTER
The contents of the first 128 bytes is shown.
• d , ENTER
The contents of the second 128 bytes is shown.

6 - 68

Examples

 A - 1

References

A. References to literature
Controllers

Instruction manual E 331 GB, KUAX 644 PC Control
Kuhnke GmbH, Malente

Instruction manual E 312 GB, KUAX 657P Profi Control
Kuhnke GmbH, Malente

Instruction manual E 399 GB, KUAX 680C Compact Control
Kuhnke GmbH, Malente

Instruction manual E 414 GB, Control Terminal KDT 680CT
Kuhnke GmbH, Malente

Instruction manual E 308 GB, KUAX 680I Profi Control
Kuhnke GmbH, Malente

Modules

Instruction manual E 357 GB, Modules of KUAX 657 and 657P
Kuhnke GmbH, Malente

Instruction manual E 326 GB, Modules of KUAX 680I, 680C and KDT 680CT
Kuhnke GmbH, Malente

Software

Beginner's manual E 327 GB, KUBES, Kuhnke User Software
Kuhnke GmbH, Malente

Instruction manual E 386 GB, KUBES modules
Kuhnke GmbH, Malente

Instruction manual E 365 GB, PROFIBUS
Kuhnke GmbH, Malente

A - 2

Appendix

 B - 1

B. Measuring the cycle time
This little program is perfect utility for measuring the cycle
time of your program without requiring any other tools. We
recommend embedding it in your program as a separate pro-
gram module.

Definition:
The cycle time consists of program code, module calls, V.24
communication, watchdog monitoring and processing of timers
and counters.

Program structure:
- Module "ZYKL_TST" (see next page) determines the cycle

time of the controller in microseconds.
- The maximum cycle time that can be measured is 10000 µs

(10 ms), or, optionally, 65 ms (see note at the end of the pro-
gram).

- We recommend storing this module in a folder so that you
can incorporate it in a project at any time.

- To call the module up in your project, include the instruction
JPP ZYKL_TST in your ORG module program.

- If you are working with a KUAX 667 you have to replace the
four LSLD commands (lines 16...19) by a MULD 16 com-
mand.

- The utility measures the time (x * 10 ms (10000 µs)) needed
for 625 cycles.. Multiplied by 16 (16 * 625 = 10000) this
number is the cycle time.

- Module ZYKL_TST also extends the cycle time by approxi-
mately 40 µs.

- The result is written into BM15.00 as a 16bit value. Display
it either via a dialog terminal or vir the dynamic display un-
der KUBES.

Addresses BM15.00...07 must not be used for writing opera-
tions anywhere else in the user program. If they are, you must
use other operands for calculating the cycle time.

B - 2

Appendix

======== KUBES ===
 Program module IL
Project : PALL_644 Network :
Module : ZYKL_TSTZYKL_TSTZYKL_TSTZYKL_TSTZYKL_TST No.: 9 created : Feb 11 1991 15:18
User : Heinz-Werner Panck changed : Feb 09 1996 09:58
Comment : Testing the cycle time
==

 1: ; **** Count the 10 ms pulses ****
 2: L T00.00 ; Timer 10ms compare
 3: CMP BM15.06 ; with old value
 4: JP= CONTINU1 ; jump if =
 5: = BM15.06 ; otherwise new value
 6: INCD BM15.02 ; 10ms counter + 1
 7:
 8: ; **** Counting the cycles ****
 9: CONTINU1 INCD BM15.04 ; cycle counter + 1
 10: LD BM15.04 ; counted enough
 11: CMPD 625 ; cycles ?
 12: JP< END ; else —>
 13:
 14: ; **** Multiply by 16 *****
 15: LD BM15.02 ; 10ms counter
 16: LSLD ; multiplied
 17: LSLD ; by 16
 18: LSLD ; [16 * 625 = 10000]
 19: LSLD
 20: ; !!!!!!!!!!!!!!!! the next line shows the result !!!!!!!!!!!!!!!!
 21: =D BM15.00 ; cycle time in microseconds
 22:
 23: ; **** Delete old values ****
 24: LD 0
 25: =D BM15.02
 26: =D BM15.04
 27: END NOP

In case the cycle time is longer than 10 ms, exchange the 10ms
clock pulse by the 100ms clock pulse (T00.0 -> T00.01) and re-
place the four LSLD commands (lines 16...19) by a MULD 160
command.

Index - 1

Index

AAAAA

address 4-3
addressing 4-1
analog-to-binary conversion 6-52
arithmetic commands 5-5
assignments 5-4

BBBBB

binary <-> BCD conversion 5-12
bit markers 4-8
byte markers 4-8

CCCCC

C high-level programming lan-
guage 1-4

C tasks 1-4
channel 4-1
commands

description 5-1
comment 4-3
comparison commands 5-6
copy commands 5-11
counters 4-9, 5-15
cycle time 3-3, B-1

DDDDD

danger 2-2
caused by high contact voltage 2-2

data module 3-15
data modules

commands 5-18
programming of 6-59

Index
EEEEE

edge analysis 5-13
equivalence (XON) 5-2
exclusive-OR 5-2
external modules 3-2

FFFFF

function module 3-6

GGGGG

group 4-1
group specifier 4-1

HHHHH

hierarchy
of modules 3-1

IIIII

information / cross reference 2-2
initialization module 3-12

commands 5-17
input addresses

of inputs not defined in the symbol
table 5-3

inputs
analog 4-7
digital 4-5

instruction manuals
overview A-1

interrupt module 3-8

JJJJJ

jump commands 5-10

Index - 2

Index

KKKKK

KDT 680CT 1-1
KUAX 644 1-1
KUAX 657P 1-1
KUAX 680C 1-1
KUAX 680I 1-1
KUBES 1-2
KUBES module 3-14
KUBES modules 1-4

LLLLL

load and logical operations com-
mands 5-2

with unoccupied modules 5-2

MMMMM

manipulation of bytes and flags 5-8
markers 4-8
measuring the cycle time B-1
module calls 5-9
module overview

under KUBES 3-2
module programming

return jump 3-3
modules

programming 3-1
multitasking 1-3

NNNNN

networking 1-4
non-equivalence (XO) 5-2
notes

of warning 2-2

OOOOO

offset addressing 4-2
operand mnemonics 4-3
operands 4-1

organization module 3-4
outputs

analog 4-7
digital 4-5

PPPPP

PROFIBUS 1-4
program memory 1-3
program module 3-5
programming aid

KUBES 1-2
programming examples 6-1

AND 6-2
circuit conversion 6-14
combinational circuits 6-8
data modules 6-59
falling delay 6-24
memory function 6-7
NAND 6-4
negation at input 6-3
negation at output 6-3
NOR 6-4
OR 6-2
programmable clock 6-28
programmable pulse with negative

edge 6-18
programmable pulse with positive

edge 6-17
pulse with negative signal 6-20
pulse with positive signal 6-19
raising delay 6-23
S-markers as AND/OR markers 6-

11
self-locking circuit 6-6
software timers 6-21
special circuits 6-15
XO 6-5
XON 6-5

pulses 5-13

Index - 3

Index

RRRRR

references A-1
rotation commands 5-7

SSSSS

safety 2-1
set commands 5-4
shift commands 5-7
software clock pulse 4-9
special commands 5-16
step chain

with step markers 6-32
supplement 4-3
symbol 4-3
symbol table 4-3
system error marker 4-9

TTTTT

target group 2-1
target systems 1-1
tasks 1-3
time interrupts 3-7
timer module 3-7
timers 4-8, 5-14
trigger module 3-13

UUUUU

utility programs B-1

VVVVV

virtual modules 3-2

WWWWW

watchdog 3-3
word operations 4-8
working principle

of CPU 1-3

ZZZZZ

ZYKL_TST B-1

Index - 4

Index

	Table of contents
	1. Introduction
	1.1. Target systems
	1.2. Programming aid KUBES
	1.3. Working principle of CPU
	1.3.1. Multitasking
	1.4. Other programming aids
	1.4.1. KUBES modules
	1.4.2. Programming in the C high-level programming language
	1.4.3. Networking software
	2. Safety information
	2.1. Target group
	2.2. Reliability
	2.3. Notes
	2.3.1. Danger
	2.3.2. Danger caused by high contact voltage
	2.3.3 Important information / cross reference
	3. Software modules
	3.1. Organization module
	3.2. Program module
	3.3. Function module
	3.4. Timer module
	3.5. Interrupt module
	3.5.1. Call by error or failure messages
	3.5.2. Call by interrupt-controlling modules (KUAX 680..)
	3.5.3. Call by slave module (KUAX 657P)
	3.6. Initialization module
	3.7. Trigger module
	3.8. KUBES module
	3.9. Data module
	3.9.1. Creating data modules
	3.9.2. Transmitting data modules to the PLC
	3.9.3. Getting data modules from the PLC
	3.9.4. Exporting data modules
	3.9.5. Importing data into a data module
	3.9.6. Editing data modules online
	3.9.7. Data processing ranges
	3.9.8. Programming
	3.9.8.1. Load commands
	3.9.8.2. Store commands
	4. Operands
	4.1. Addressing
	4.2. Symbolic specification of operands
	4.3. Features of the operand groups
	4.3.1. Digital inputs and outputs
	4.3.2. Analog inputs and outputs
	4.3.3. Bit markers and byte markers
	4.3.4. Programmable timers
	4.3.5. Software clock pulse
	4.3.6. Counters
	4.3.7. System error marker "ERR00.00"
	5. Description of the commands
	5.1. Logical operations commands
	5.2. Assignments and set commands
	5.3. Arithmetic commands
	5.4. Comparison commands
	5.5. Shift and rotation commands
	5.6. Manipulation of bytes and flags
	5.7. Module calls
	5.8. Jump commands
	5.9. Copy commands
	5.10. Binary<->BCD conversion
	5.11. Programmable pulses (edge analysis)
	5.12. Programmable timers
	5.13. Programmable counters
	5.14. Special commands
	5.15. Commands of the initialization modules
	5.16. Commands of the data modules
	6. Programming examples
	6.1. Basic functions
	6.1.1. AND
	6.1.2. OR
	6.1.3. Negation at input
	6.1.4. Negation at output
	6.1.5. NAND
	6.1.6. NOR
	6.1.7. XO EXCLUSIVE-OR (non-equivalence)
	6.1.8. XON EXCLUSIVE-NOR (equivalence)
	6.1.9. Self-locking circuit
	6.2. Memory functions
	6.2.1. With reset dominance
	6.2.2. With set dominance
	6.3. Combinational circuits
	6.3.1. OR-AND circuit
	6.3.2. Parallel circuit to output
	6.3.3. Network with one output
	6.3.4. Network with outputs and markers
	6.4. S-markers as AND/OR markers
	6.4.1. Network with OR marker
	6.4.2. Network with AND marker
	6.4.3. Network with multiple use of the OR marker
	6.5. Circuit conversion
	6.6. Special circuits
	6.6.1. Current surge relay
	6.6.2. Reverse circuit (reverse contactor) with forced halt
	6.6.3. Reverse circuit (reverse contactor) without forced halt
	6.7. Pulse edge analysis
	6.7.1. Programmable pulse with positive edge
	6.7.2. Programmable pulse with negative edge
	6.7.3. Pulse with positive signal
	6.7.4. Pulse with negative signal
	6.8. Software timers
	6.8.1. Impulse at startup
	6.8.2. Impulse of constant length
	6.8.3. Raising delay
	6.8.4. Falling delay
	6.8.5. Impulse generator with pulse output
	6.8.6. Flash generator with one timer
	6.8.7. Flash generator with two timers
	6.9. Programmable clock
	6.10. Software counters
	6.11. Programming an operational sequence
	6.11.1 Step chain with step markers
	6.11.2. Step chain with automatic status registration
	6.12. Register circuits
	6.12.1. 1bit shift register
	6.12.2. 8bit shift register
	6.13. Bit-to-byte transfer
	6.14. Comparator circuits
	6.14.1. 8bit comparator
	6.14.1.1. Result of the comparison: logical evaluation
	6.14.1.2. Result of the comparison: evaluation with one jump
	6.14.2. 16bit comparator
	6.14.2.1. Result of the comparison: logical evaluation
	6.14.2.2. Result of the comparison: evaluation with one jump
	6.15. Arithmetic functions
	6.15.1. Binary 8bit adder
	6.15.2. Binary 16bit adder
	6.15.3. 8bit BCD adder
	6.15.4. Binary 8bit subtractor
	6.15.5. Binary 16bit subtractor
	6.15.6. 8bit BCD subtractor
	6.15.7. Binary 8bit multiplier
	6.15.8. Binary 16bit multiplier
	6.15.9. Binary 8bit divider
	6.15.10. Binary 16bit divider
	6.16. Code converters
	6.16.1. 8bit BCD-to-binary converter
	6.16.2. 8bit binary-to-BCD converter
	6.16.3. 16bit BCD-to-binary converter
	6.16.4. 16bit binary-to-BCD converter
	6.16.5. 3 decade BCD-to-binary converter
	6.16.6. 3 decade binary-to-BCD converter
	6.16.7. 10bit analog-to-binary conversion
	6.17. Module programming
	6.18. Data modules
	6.18.1. Creating data modules offline
	6.18.1.1. Creating a data file with the text editor
	6.18.1.2. Creating the data module
	6.18.1.3. Importing a data module
	6.18.1.4. Testing the data module
	6.18.2. Creating data modules online
	6.18.2.1. Creating a data module
	6.18.2.2. Editing data modules in the display address range
	6.18.2.3. Loading data modules from the PLC
	6.18.2.4. Exporting data modules
	A. References to literature
	B. Measuring the cycle time
	Index

