(KUHNKE)

Kuhnke Electronics
Instruction Manual

Eco Control 667E

Small compact PLC
E 556 GB 3 December 1998 / 77.931

This data sheet is primarily intended for use by design, project, and deve-
lopment engineers. It does not give any information about delivery possibili-
ties. Data is only given to describe the product and must not be regarded as
guaranteed properties in the legal sense. Any claims for damages against us
- on whatever legal grounds - are excluded except in instances of deliberate
infent or gross negligence on our part.

We reserve the rights for errors, omissions and modifications.

Reproduction even of exiracts only with the editor's express and written prior
consent.

Table of contents

Table of contents

T INTOdUCHON ... 11
Tl FEAMUMES e 11
1.2 Successor to Pico/Compact Control KUAX 667ccuveennne. 12

2 Reliability, safety ..o 13
2.1 TANGEE GrOUP ..eeeieieiiiiie et 13
2.2 Reliability ...coeiiiiiii e 13
2.3 NOTES ottt 14

2.3.1 DONGET ittt 14
2.3.2 Dangers caused by high contact voltage...............ccccccee. 14
2.3.3 Important information / cross reference................cccoouenen. 14
24 SAFEY oo 15
2.4.1 Observe during planning and installation................c......... 15
2.4.2 Observe during maintenance or servicingcccccce...... 16
2.5 Electromagnetic compatibility.............ccoooiiiiiiii 17
251 Definition ...c.ooieiiiieiiee e 17
2.5.2 Resistance fo interference............cccccovieiiiiiiiinciee, 17
2.5.3 Interference emissionccoovieiiiieniiiiiiiee e 18
2.5.4 General notes on installation..............ccccooiiiiiiii 18
2.5.5 Protection against external electrical influences.................. 19
2.5.6 Cable routing and Wiring...........ccceeviiiiiiiiiiiiiieieeiee 19
2.5.7 Location of installationcccoocoeviiiiiiiiii 19
2.5.8 Particular sources of interferenceccccooieiiiiiiienn, 20

3 HAMAWAIE ..o 21
3.1 Model variantsccviiieiiiiiii e 21
3.2 TOP VIEW ..ottt 22

3.2.1 EcoControl BO7E 8/8...... oo 22

Table of contents

3.2.2 EcoControl BE7E 16/ 1. ..o 23
3.2.3 EcoControl 687E 32/32. oo 24
3.3 Mechanical designcoooviiiiiiiiiiii 24
3.3.1 nstallation ..o 25
3.3.2 Earthing .oooeioi 26
34 POWET SUPPIY..coveiiiiieiiiecii et 27
3.4.1 System power supply........ccccooiiiiiiiiniiiiiii 27
3.5 Digital iNPUES ..c..eiiiiii e 28
3.6 Digital OUIPULS ..o 29
3.7 Serial interface COMToiiiiiiiiiiieee e, 30
3.8 Light emitting diodescccoiiiiiiiiii 30
3.9 PrOCESSON i 31
3.9.1 Onchip RAM......ooiiiiiiiiie e 31
3.10 Memory distributioncccoooviiiiiiiiiiiieice e 31
3.10.T Operating systemcccuueiiiiiiiiieiiiiie et 31
3.10.2 USEr Programeeeeiriiiieeiiiiee ettt 31
3.10.3 Data MEMOTY.....ccooiiiiiiiiiiiiieiiit e 33
3.10.4 NVRAM: special features...........ccoovvrieriiiiiiiiiieee, 33
3.10.5 On-<hip RAM: special featurescccoovviniiiiiiinnnen. 34

A SOMWAIE ... 35
4.1 Operative approachcccceiiiiiiiiieiiee et 35
4711 PLC eyCle it 36
4.2 Operand raNges.......ccoueeiiiiiieiie ettt 43
421 Definitionscoviiiiiiiiiieiieie e 44
4.2.2 Summary of operandsccceviiiiiiiiii e 45
4.2.3 Setoperand funchons...........ccccueviiiiiiiiniieiie e 46
4.3 Description of commandsccooiiiiiiiiiiiee e 47
4.4 Types of operandsccoeviiiiiiiiiiiiiiee e 48
441 ADAressing......ccoocovioiiiiiiiiiieee e 49

Table of contents

4.42 Summary of commandsccoooiiiiiiiiiie e 50
4.5 Programming modules..............cccooiiiiiiiiiiiii 65
4.5.1 Organisation module.............cccooviiiiiiiiiiiiiiiee 66
4.52 Program modulecccoiiiiiiiiii 66
453 KUBES module........cccooiiiiiiiiiiiiiiie e 66
4.5.4 Module hierarchy...........ccooooiiiiiiiiiiii 67

5 KUBES Modules........cocuiiiiiiiiiiiiii e 69
5.1 KUBES module libraries............cccoooiiiiiiiiiiii, 70
5.1.1 Contents of the KUBES module library.............c..cccoeviennn 71
5.1.2 Loading KUBES modules.............cccooviieiiiiiiiiiiieeiee 72
5.2 Communication modulesccoooiiiiiiiiiiiiii 73
5.2.1 Reserved operands............cccevieriiiiiiiiiniieiiec e 74
522 V.24 mode sefingscc.coouveriiiiiiiiiieiieeie e 75
5.2.3 Sending single characters (V2460671S)ccccccvevveeirannnnn 76
5.2.4 Receiving single characters (V24667I1E)ccovviinnennine 77
5.2.5 Sending strings (SSTOOZIN)ccoviiiiiiiniiiiiieiiiieie 78
5.2.6 Example program “serial communication”..............cccceueee 79
5.3 Copying data (blocks)........ceviiiiiiiiiiiiiee 83
5.3.1 Reserved operands............cccerieriiiiiiniiniiciec e 83
5.3.2 Operands’ intermediate code addressesccccceenee. 84
5.3.3 Reading data (RD_OFFS)cccueiiiiiiiiiiieiieeie e 85
5.3.4 Writing data (WR_OFFS).......cccoiiiiiiiiiiiieiie e 86
5.3.5 Example program “copy data block”cccocii. 87
6 EXAMPIES .o 21
6.1 Basic FUNCHONS.eiiiiiiiiec e 91
G 1.1 AND ot 91
6.1.2 ORueiiiie e 91
6.1.3 Negated iNPub....cc.ooiiiiiiiiii e 92
6.1.4 Negated OUIPUL......c.oeiiiiiiiiiiee e 92

Table of contents

6.1.5 NANDcooiiiii e 93
6.1.6 INOR ..o 93
6.1.7 XO: exclusive OR (antivalence)cccceevviiiiiiien. 94
6.1.8 XON: exclusive NOR (equivalence)...........ccccooveiieniiiinns 94
6.1.9 Seahin Circuitooeiiiiiiii 95
6.2 Memory fFunchionsccooviiiiiiiiiiiiicee e 96
6.2.1 Mainly resettingcccoooiiiiiiiiei e 96
6.2.2 Mainly seffing.......ccoeriiiiiiiiii 96
6.3 Switching Circuitscviiiiiiiiii e 97
6.3.T OR-AND CirCUIt..c.eviieiiiieiiiceiiccte e 97
6.3.2 Parallel circuit to outputoc.eiiiiiii 97
6.3.3 Network with one output.........cccoiiiiiiiiiiiiii, 98
6.3.4 Networ with outputs and marker...............ccccoooiiiiiiiiinn, 99
6.4 Special markers used as AND/OR marker............cccocvvenennn.. 100
6.4.1 Network with OR marker............cccoooiiiiiiiiiiiie, 100
6.4.2 Network with AND markerccccooviiiiiiiiiiiiie, 101
6.4.3 Network with multiple use of the OR marker..................... 102
6.5 Circuit CONVErSIONccoviiiiiiiiiiiciiiit et 103
6.6 Special-purpose CirCUItscoouieiiiiieiii e 104
6.6.1 Impulse relaycoooiiiiiii 104
6.6.2 Reversing circuit (reversing starter) with forced stop........... 105
6.6.3 Reversing circuit (reversing starter) without forced stop 106
6.7 Edge evaluation (wiping pulse)c.cccoeiiiiiiiiiiieniiiciee 107
6.7.1 Programmable wiping pulse at rising edge....................... 107
6.7.2 Programmable wiping pulse at falling edge...................... 108
6.7.3 Wiping pulse at positive signalccccevviiiniinrnnn. 109
6.7.4 Wiping pulse at negative signal...........c.ccoocoovininnn. 110
6.8 SOMWAre HMErs........couviiiiiiiiiii e 111
6.8.1 MNemONICS.......eeiiiiiiiiiiiiiiiiceiic e 11

Table of contents

6.8.2 Impulse at Starkupoooeeiiiiii 113
6.8.3 Impulse of constant duration............cccooeeeiiiiiiiiiie. 114
6.8.4 Raising delay.......c.ccoovviiiiiiiiiiiii 115
6.8.5 Fallingdelay.......ccoooiiiiiiii 116
6.8.6 Pulse generator with wiping pulse output............ccccoeenne. 117
6.8.7 Flash generator with one timercccooovvieiiiiiiiee. 118
6.8.8 Flash generator with two timerscccccoviviiniincnen. 119
6.9 Programmable clockcccooiiiiiiii 120
6.10 SoftWare COUNTErScueiuieiiiieiiieie e 121
6.10.1T MNEMONICS.....evviiiiiiiiiiiiiiiite e 121
6.10.2 Up-counter to 12 . ..ccuuiiiiiiiiiiiiiiiiccee e 122
6.11 Programming a sequential process..............cccoevieevienieancenne. 123
6.12 Register CirCUIS......ooiiiiiiiiiiiee e 125
6.12.1 1-bit shift register..........ccoeoiiiiiiiiiiiiiiiecee 125
6.12.2 8-bit shift register.........ccoooveviiiiiiiiiicee 126
6.13 Copy commands (bitto-byte transfer)cccoooeiiiiiiiinnnn 127
6.13.1 Copy eight 1-bit operands to one byte.............ccccceeeenne. 127
6.13.2 Copy one byte to eight 1-bit operands...........cccccoeerrneenee. 127
6.13.3 Copy sixteen 1-bit operands to two bytes......................... 127
6.13.4 Copy two byte to sixteen 1-bit operandsccceeueenee. 128
6.14 Comparator CIrCUIScocueieruiieriii et 128
6.14.1 8-bit comparatorcocveviiiiiiiecieeeee e 128
6.14.2 16-bit comparator..........coocieiiiaiiiiiieeece e 129
6.15 Arithmetic functions.........cccociviiiiiiii 130
6.15.1 Binary 8-bit adder..........ccooiiiiiiiiii 130
6.15.2 Binary 16-bitadder..........coviiiiiiiiiieiiecee 131
6.15.3 8-bit BCD adder........cccveviiiiiiiiiiicce 132
6.15.4 Binary 8-bit subtractor ..o 133
6.15.5 Binary 16-bit subtractorcccoceviiiiiiiiiii 134

Table of contents

6.15.6 8-bit BCD subtractor..........cccoovvieiiiiiiiieiiiee 135
6.15.7 Binary 8-bit multiplicator.............cccooeiiiiiiiiiiiieii 136
6.15.8 Binary 16-bit multiplicator...........cccoccoiiiiiiiiiiiii 137
6.15.9 Binary 8-bit divider...........cccoiiiiiiii, 138
6.15.10 Binary 16-bit divider.........ccccooiiiiiiiiiii, 139
6.16 Code CONVEMENSo.eviiieiiieiiee et 140
6.16.1 BCD-o-binary converter, 8-bit..........cccoooiiiiiiiiiiiie. 140
6.16.2 Binaryto-BCD converter, 8-bit........ccccoceviiiiiiiniiiie, 141
6.16.3 BCD-o binary converter, 16 bit.......ccccocviviiiiiiiiiiiie. 142
6.16.4 Binaryto-BCD converter, 16 bit........cccoooviiviiiiiiiiiiie. 144
6.17 Modular programmingccceeiiiiiiiniiiieee e 146
6.17.1 Part task definition...........coocooviiiiiiiiiii 146

7 Troubleshooting.........ccooouiiiiiiiiiiii e 153
7.1 “Failure” LED flashing2 > Short circuit........c..cccvvevieriiiiinnne. 153
7.2 LEDs ,run/stop” and ,failure” light up red - Undervoltage..... 153
7.3 No online connection to KUBES®.............ccooiiiiiiiiiiiie. 154
8 Data SUMMAIY ..coeiiiiiiiiiiie e 157
8.1 Technical data........coouiiieiiiiiiii e 157
B.1.T DESIGN weeiiiiiiiii e 157
8.1.2 System power supply........ccccoviiriiiiiiiiiiii e 157
8.1.3 System status indicatorscccoeviieiiieiiiiiieieeieei 158
8.1.4 Serial interfaceccoooviiiiiiiii 158
8.1.5 Programming.......cccueiiiiiiiiiiiiiiieee e 158
8.1.6 Digital INPULS ...coouiiiiieiiiii e 159
8.1.7 Digital OUtPULS......eeiiieiiiciieeie e 160
8.1.8 Processor and memorycccoeoiiiiiiniiiiieie e 161
8.1.9 OPerands........ccceeiiieiiiiiieeie e 161
8.2 Order specificatons............cccooviiiiiiiiiiiiee e 162
8.2.1 Controllers........coveviiiiiiie e 162

Table of contents

8.2.2 ACCESSOTIES oot 162
O X e 163

Sales & Service

Table of contents

10

1

Introduction

Introduction

Eco Control 667E is a small high-performance PLC. Due to
its compact design it is well-suited for all applications that
expect a lot of “functionality” from a small machine.

Fig. 1: Eco Control 667E 16/16

1.1 Features

> Easy installation due to the integrated snap-on device
for carrier rails.

> Program and data memories are located in the built-in
NV-RAM (non-volatile RAM).

> Program and remanent operands are permanently sto-
red without any energy from outside (battery or accumula-
tor).

> Set of operands:

- Inputs: 8, 16, 32 (depending on model)

- Outputs: 8, 16, 32 (depending on model)

— Bit markers: 1320, inc. 512 remanent markers

— Byte markers: 2816, inc. 2304 remanent markers
—Timers: 32, 10 ms...65535 min, quartz-precision

— Counters: 32, 0...65535

> Programming via PC, MS°Windows und KUBES

11

Introduction

1.2 Successor to Pico/Compact Control KUAX 667
Eco Control 667E is the legitimate replacement for “Pico/
Compact Control KUAX 667".

Apart from its software being compatible with the older ty-
pes it also features a couple of major improvements:

> The device is smaller although its performance is the
same.

> Installation is easier due to the integrated snap-on de-
vice.

> Modern manufacturing techniques ensure that you get a
lot more value for more money.

> A plug-type memory module is no longer required be-
cause the program is stored in the built-in NV-RAM.

> No battery or accumulator because the NV-RAM safely
stores programs and data.

» The controller is CE-certified.

12

Reliability/Safety

2 Reliability, safety

2.1 Target group

This instruction manual contains all information necessary
for the use of the described product (control device, control
terminal, software, etc.) according to instructions. It is writ-
ten for the personnel of the construction, project planning,
service and commissioning departments. For proper under-
standing and error-free application of technical descripti-
ons, instructions for use and particularly of notes of danger
and warning, extensive knowledge of automation techno-
logy is compulsory.

2.2 Reliability

Reliability of Kuhnke controllers is brought to the highest
possible standards by extensive and cost-effective means in
their design and manufacture.

These include:
> selecting high-quality components,
> quality agreements with our sub-suppliers,

> measures for the prevention of static charge during the
handling of MOS circuits,

> worst case planning and design of all circuits,

> inspections during various stages of fabrication,

> computer aided tests of all assembly groups and their
coefficiency in the circuit,

> statistical assessment of the quality of fabrication and

of all returned goods for immediate taking of corrective ac-
tion.

13

Reliability/Safety

2.3 Notes

Despite the measures described in chapter 2.2, the occur-
rence of faults or errors in electronic control units - even if
most highly improbable - must be taken into consideration.

Please pay particular attention to the additional notes
which we have marked by symbols in this instruction ma-
nual:

2.3.1 Danger
& This symbol warns you of dangers which may cause

death, (grievous) bodily harm or material damage if the
described precautions are not taken.

2.3.2 Dangers caused by high contact voltage

A This symbol warns you of dangers of death or (grievous)
bodily harm which may be caused by high contact volta-
ge if the described precautions are not taken.

2.3.3 Important information / cross reference

= This symbol draws your attention to important additional
information concerning the use of the described product. It
may also indicate a cross reference to information to be
found elsewhere.

14

2.4 Safety

Reliability/Safety

Our product normally becomes part of larger systems or in-
stallations. The following notes are intended to help inte-
grating the product info its environment without dangers for
humans or material/equipment.

2.4.1 Observe during planning and installation

A

> 24V DC power supply: Generate as electrically safely
separated low voltage. Suitable devices are, for example,
split ransformers constructed in compliance with European
standard EN 60742 (corresponds to VDE 0551).

> In case of power breakdowns or power fades: the
program is to be structured in such a way as to create a
defined state at restart that excludes dangerous states.

> Emergency switch-off installations must comply with
EN 60204/IEC 204 (VDE 0113). They must be effective at
any time.

> Safety and precautions regulations for qualified appli-
cations have to be observed.

> Please pay particular attention to the notes of warning
which, at relevant places, will make you aware of possible
sources of dangerous mistakes or faults.

> Relevent standards and VDE regulations are to be ob-
served in every case.

> Control elements are to be installed in such a way as
to exclude unintended operation.

» Control cables are to be layed in such a way as to ex-
clude interference (inductive or capacitive) which could in-
fluence controller operation or its functionality.

To achieve a high degree of conceptual safety in planning
and installing an electronic controller it is essential to ex-

15

Reliability/Safety

actly follow the instructions given in the manual because
wrong handling could lead to rendering measures against
dangers ineffective or to creating additional dangers.

2.4.2 Observe during maintenance or servicing

16

> Precautions regulation VBG 4.0 must be observed,
and section 8 (Admissible deviations during working on
parts) in particular, when measuring or checking a control-
ler in a power-up condition.

> Repairs must only be made by specially trained Kuhn-
ke staff (usually in the main factory in Malente). Warranty
expires in every other case.

> Spare parts:

> Only use parts approved of by Kuhnke. Only genuine
Kuhnke modules must be used in modular controllers.

> In the case of modular systems: modules are to be
dead when plugging or unplugging them. They may
otherwise be destroyed or their functionality adversely af-
fected, the latter without you necessarily noticing immedia-
tely.

> Dispose of any batteries and accumulators as hazar-
dous waste.

Reliability/Safety

2.5 Electromagnetic compatibility

2.5.1 Definition

Electromagnetic compatibility is the ability of a device to
function satisfactorily in its electromagnetic environment wi-
thout itself causing any electromagnetic interference that
would be intolerable to other devices in this environment

Of all known phenomena of electromagnetic noise, only a
certain range occurs at the location of a given device. This
noise depends on the exact location. It is defined in the re-
levant product standards.

The international standard regulating construction and de-

gree of noise resistance of programmable logic controllers
is IEC 1131-2 which, in Europe, has been the basis for Eu-
ropean standard EN 61131-2.

2.5.2 Resistance to interference

> Electrostatic discharge, ESD
in acc. with EN 61000-4-2, 3" degree of sharpness

> Irradiation resistance of the device, HF
in acc. with EN 61000-4-3, 3" degree of sharpness

> Fast transient interference, burst
in acc. with EN 61000-4-4, 3" degree of sharpness

> Immunity to damped oscillations
in acc. with EN 61000-4-12 (1 MHz, 1 kV)

17

Reliability/Safety

2.5.3 Interference emission

Interfering emission of electromagnetic fields, HF
in acc with EN 55011, limiting value class A, group 1

= If the controller is designed for use in residential areas,
then high-frequency emissions must comply with limiting
valve class B as described in EN 5501 1.
Fitting the controller into an earthed metal cabinet and
equipping the supply cables with filters are appropriate
means for maintaining the relevant limiting values

2.5.4 General notes on installation

As component parts of machines, facilities and systems,
electronic control systems must comply with valid rules and
regulations, depending on the relevant field of application.
General requirements concerning the electrical equipment
of machines and aiming at the safety of these machines are
contained in Part 1 of European standard EN 60204 (cor-
responds to VDE 0113.

= For safe installation of our control system please observe
the following notes

18

Reliability/Safety

2.5.5 Protection against external electrical
influences
Connect the control system to the protective earth conduc-

tor to eliminate electromagnetic interference. Ensure practi-
cal wiring and laying of cables.

2.5.6 Cable routing and wiring

Separate laying of power supply circuits, never together
with control current loops:

» DC voltage 60V ...400V
» AC voltage 25V ... 400V

Joint laying of control current loops is allowed for:

> shielded data signals

> shielded analogue signals

> unshielded digital /O lines

> unshielded DC voltages < 60 V
> unshielded AC voltage < 25V

2.5.7 Llocation of installation

Make sure that there are no impediments due to temperatu-
res, dirt, impact, vibration and electromagnetic interfe-
rence.

Temperature

Consider heat sources such as general heating of rooms,
sunlight, heat accumulation in assembly rooms or control
cabinets.

19

Reliability/Safety

Dirt
Use suitable casings to avoid possible negative influences
due to humidity, corrosive gas, liquid or conducting dust.

Impact and vibration

Consider possible influences caused by motors, compres-
sors, transfer lines, presses, ramming machines and ve-
hicles.

Electromagnetic interference

Consider electromagnetic interference from various sources
near the location of installation: motors, switching devices,
switching thyristors, radio-controlled devices, welding
equipment, arcing, switched-mode power supplies, conver-
ters / inverters.

2.5.8 Particular sources of interference

20

Inductive actuators

Switching off inductances (such as from relays, contactors,
solenoids or switching magnets) produces overvoltages. It
is necessary to reduce these extra voltages to a minimum.
Reducing elements may be diodes, Z-diodes, varistors or
RC elements. To find the best adapted elements, we re-
commend that you contact the manufacturer or supplier of
the corresponding actuators for the relevant information.

Hardware

3 Hardware

Eco Control 667E is a compactly built controller in a hou-
sing with an integrated snap-on device for installation on
carrier rails

Inputs and outputs are connected to it by means of screw-
type locking terminals. A female 9-pin D-Sub connector
serves as the interface for communication with program-
ming PCs or other devices such as dialogue terminals.

3.1 Model variants

The different variants vary in their 1/O configuration.

» Eco Control 667E 8/8

8 digital inputs

8 digital outputs

1 serial interface (V.24)
» Eco Control 667E 16/16

16 digital inputs

16 digital outputs

1 serial interface (V.24)
» Eco Control 667E 32/32 (in preparation)

32 digital inputs

32 digital outputs

1 serial interface (V.24)

21

Hardware

3.2 Top view

This view tells you where the connectors and light emitting
diodes (LEDs) are located on the device.

3.2.1 Eco Control 667E 8/8

System response LEDs
Power supply to outputs

8 digital outputs
(underneath:red LEDs)

< 152

[Sepocssseq

90000000

24VDCO 1 234567 i
Digital Output 24V DC 0.5A

8 digital inputs
(above: green LEDs)

Power supply to system
Serial interface (V.24)

Fig. 2: Top view of Eco Control 667E 8/8

22

Hardware

3.2.2 Eco Control 667E 16/16

System response LEDs
Power supply to outputs

16 digital outputs
(underneath:red LEDs)

»

< 152

Q0000000000 00000
24/DCO 12 345 6 7 89101112131415
Digital Output 24V DC 0.5A

Digital Input 24V DC
0123456789101112131415
jofelolelolslelelololefoleolole]

16 digital inputs
(above: green LEDs)

Power supply to system
Serial interface (V.24)

Fig. 3: Top view of Eco Control 667E 16/16

23

Hardware

3.2.3 Eco Control 667E 32/32

System response LEDs

Power supply to outputs
16 digital outputs

address O00.xx
(underneath:red LEDs)

268

Power supply to outputs

16 digital outputs
address O01.xx

(underneath:red LEDs)

>

|

«—— 90 —

667.70400

@ run/stop
@ faiure

ooml

24VDC

L1-L1+
—

!ss!sosmd@smsl

L-20000000000000000
24/DCO 12 345 67 89101112131415

Digital Output 24V DC 0.5A (address 00.xx

L2/0000000000000000
24VDCO 1 23 456 789101112131415

Digital Output 24V DC 0,5A (address 01.xx

Digital Input 24V DC (address 00.xx)
0123456 789101112131415
0000000000000000

Digital Input 24V DC (address 01.xx)
012 3456789101112131415
©000000000000000

16 digital inputs
address 100.xx
(above: green LEDs)

Power supply to system

Serial interface (V.24)

16 digital inputs
address 101.xx
(above: green LEDs)

Fig. 4: Top view of Eco Control 667E 32/32

3.3 Mechanical design

The housing mainly consists of an aluminium profile with an
integrated snap-on device for installation on carrier rails.
The side walls of galvanised sheet metal steel are riveted to
the aluminium profile. The hooks of the plastic cover snap
info the appropriate holes in the side walls.

24

3.3.1 Installation

Hardware

Eco Control 667E is designed for installation on carrier
rails (in acc. with DIN EN 50022, 35 x 7.5 mm).

Procedure

1 Push the device against the
carrier rail such that the me-
tal spring snaps into the
space between carrier rail
and installation surface (see
illustration).

Metal spring

2 Push the device up
against the installation
wall until it snaps in.

Fig. 5: Installation on carrier rail

25

Hardware

3.3.2 Earthing

The metal housing is to be connected to earth. Each side
wall has an earthing connector integrated into it (see arrow
in illustration):

Vo ©

Fig. 6: Earthing connector

> Type of connector
Connect plain plug 6.3 x 0.8 mm (fast-on) to at least 1
of the side walls

> Earthing lead
Diameter: min. 2.5 mm?
Length: as short as possible

» Function: earth connection of functions.

A No protection against high contact voltage. To ensure
the protective function, make sure that the devices are
supplied with safely separated small voltages (see
chapter 2.4.1).

> The casing of the COM1 connector for the serial port
directly connects to the earth connection of functions.
This is where you attach the cable shielding.

> The connectors for +24V DC and OV supply are intfer-
nally (by spring contacts on the PCB) and capacitively
connected to the housing and, thus, to earth. High-
frequency interference is conducted to earth via this
channel.

26

Hardware

3.4 Power supply

System and outputs are supplied via separate connectors
(for the location of the connectors see chapter 3.2). This al-
lows you to switch off all outputs without having to discon-
nect the controller from its power source.

A To ensure uninterrupted operation, lay the supply cables
separately, using the shortest possible cables to connect

the power source with the controller’s supply terminals.
If you are using two different power source, you are obli-
ged fo equalise the potential between the OV connectors.

3.4.1 System power supply

The system power supply connects to a 2-pin plug-type ter-

minal block.
» Connectors: - > oV
L+ -
+24V DC
> Voltage: 24V DC -20%/+25%
» Power consumption: c. 100 mA

The outputs are supplied separately. However, potentials of
system and output supplies are not separated.

= For a description of the output supply voltage connector
refer to chapter 3.6.

27

Hardware

3.5 Digital inputs

The inputs pick up the digital signals of a variety of sour-
ces. They connect to the device by screw-type locking ter-
minals (- illustrations in chapter 3.2). Make sure that they
work within the switching thresholds indicated below,
which particularly applies to proximity switches and semi-
conductor sensors. The input circuitry adapts the incoming
signals to the system voltage.

> Defined signals and switching thresholds
logical 0 £5V
logical 1 3 15V
(Hysteresis 1...4 V)

» Signal delay
Peak voltages (noise impulses) are filtered to avoid
them being considered as valid signals which might trip
unintended switching actions. This delays signal detec-
tion by rated 5 ms:

Raising delay:
t,=3.0...7.0 ms

Falling delay:
t,=4.0..7.0ms

Fig. 7: Input signal delay

= Input signals are read between program cycles and writ-
ten into the process image . To calculate the average
availability of signals to the user program, you must there-
fore add the program cycle time to the specified delays.

28

Hardware

3.6 Digital outputs

Digital outputs are the connection to external actuators (re-
lays, contactors, solenoids, valves...). They connect to the
controller by screw-type locking terminals (- illustrations in
chapter 3.2). You can control resistive and inductive loads.
Free-wheeling diodes suppress inductive switch-off peaks.
The output status is indicated by LEDs.

Output power supply

The output power supply connects to a 2-pin plug-type fer-
minal block (= illustrations in chapter 3.2).

» Connectors: 2- > 0V
2+ >
+24V DC
> Voltage: 24V DC -20%/+25%
> Power consumption: depends on the load on the
outputs

Protection against short circuit- and overload

Outputs are protected against destruction by overload or
short circuit. In case of a fault, all outputs are disabled and
the “failure” LED flashes (= 7.1)

29

Hardware

3.7 Serial interface COM1

The serial interface mainly provides a connection to pro-
gramming PCs. Apart from that it can also be used for
communication with other devices such as dialogue termi-
nals, for example.

>

>

Type

V.24 (RS 232)

Connector

female 9-pin D-Sub connector
Pin wiring

2 TxD

3 RxD

5 Gnd

Cable shielding
connects to the plug’s frame ground.
The metal connector casing is directly connected to the

frame and, thus, to earth if the device is properly eart-
hed (see chapter 3.3.2).

3.8 Light emitting diodes

Two LEDs indicate the system status:

>

>

30

run/stop
lights up green while the PLC program is running
lights up red when the PLC program stops
failure
flashes red if there is a short at an output

Hardware

3.9 Processor

The core unit of the controller is its single-chip microproces-
sor, type 80C535. It gets its commands from the monitor
program and the user program (= 3.10).

3.9.1 On<hip RAM

The microprocessor features an integrated on-chip RAM (>
3.10.5) which allows very fast accesses.

3.10 Memory distribution

The controller has four types of memory:
Flash EPROM, NV-RAM, SRAM and on-chip RAM.

3.10.1 Operating system

The operating system is stored in the flash EPROM. It con-
tains the system software and is loaded at the Kuhnke fac-
tory before delivery. Users cannot directly access this type
of memory.

3.10.2 User program

The user program is safely stored in the NV-RAM (>
3.10.4). The device reserves 32 kbyte for the user pro-
gram.

By default, the user program is stored in machine language
code and also in KUBES' intermediate code. The latter al-
lows KUBES to retrieve the program from the controller.

31

Hardware

3.10.2.1 Disable retrievability = increase capacity

32

Storing the intermediate code in memory can be disabled

by writing into operand SLG14.05 via the user program.

There are two effects:

> The capacity of the program memory is increased.

> The program is secured against unauthorised access be-
cause it can no longer be disassembled.

SIG14.05 =0 enable intermediate code storage
<> (0 disable intermediate code storage

Before the program is transmitted to the controller, KUBES
(version 5.30 or higher) displays the following dialog:

Transmit project m

—Module mode

" Beadable as specified
" All modules readable
& No modules readable

Help=F1 Cancel

Fig. 8: Program retrievability settings in KUBES
KUBES automatically writes into SLG14.05

> Setting “All modules retrievable”:
[SLG14.05] € O
> Setting “No module retrievable”:

[SLG14.05] € 255

Hardware

3.10.3 Data memory

Data in this context comprises all operands (inputs and
outputs, bit markers, byte marker, timers and counters). The
monitor program also falls back on some parts of this me-
mory for internal purposes.

8 kbyte of the NV-RAM described in chapter 3.10.4 are
reserved for no-voltage protected operands (also called
remanent operands).

The volatile (non-remanent) operands are stored in a 24
kbyte S-RAM. This type of memory is cleared when the de-
vice is being initialised to ensure that all memory cells have
a defined status (0).

Inputs and output (Ixx.xx and Oxx.xx) as well as 40
markers (M00.00...M02.07) are mapped onto the micro-
processor’s so-called on-chip RAM. These addresses can be
accessed particularly fast (> 3.10.5).

3.10.4 NV-RAM: special features

NV-RAM technology (non-volatile RAM) ensures that pro-
grams and data are stored safely without the use of exter-
nal energy (accumulator or battery) even if you disconnect
the device from the mains. They're stored without any limi-
tation in time no matter how long the device remains swit-
ched off for. They resume their previous status when you
restart the controller.

33

Hardware

3.10.5 On-<chip RAM: special features

34

The on-chip RAM is part of the microprocessor. It can be
addressed by individual bits. Accesses to this type of me-
mory are about twice as fast as accesses to the external ty-
pes of memory, i.e. SRAM and NV-RAM. The on-chip RAM
is therefore fully occupied. Addresses are assigned to the
following operands:

> 32 inputs (100.00...101.15)

> 32 outputs (000.00...001.15)

> 40 markers (M00.00...M02.07)

Software

4 Software

4.1 Operative approach
The microprocessor receives its program from two program
memories:
> the memory containing the operating system

> the memory containing the user program

Operating system memory

It contains the operating system and all system features of

Eco Control 667E. It is permanently installed in the device
(> 3.10.1).

User program memory

It contains the programs required for controlling the machi-
ne or system. The programs are written in KUBES, Kuhnke
programming software package. The user program memo-
ry is permanently installed in the device (> 3.10.2).

The next chapters only detail the knowledge you need to
write user programs for Eco Control 667E.

The method of how to actually input the program is not ex-
plained. For a description refer to:

s Instruction manuel KUBES, E327GB

35

Software

4.1.1 PLC cycle

As a typical PLC, Eco Control 667E cyclically processes the
user program in the program memory.

36

Cycle time

The controller’s overall action in time is indicated by the
cycle time which is influenced by a variety of factors:

>

>
>
>
>

command execution time

length and structure of the program
monitor functions

selftest functions

KUBES functions

Software

4.1.1.1 The 4 phases of a PLC cycle

> Update process image
The status of the inputs is read and written into an in-
ternal RAM range (operand range 100.00 ...). The
program uses these values in the next cycle.
Exception:
Operations with byte input markers Blxx.xx immediate-
ly read the inputs without waiting for the next update
of the process image.

> Process program
Program processing always starts with the first line of
the ORG module and ends with the last line of the
ORG module (see example "structured programming").
The calculated values (assignments) are written into the
process image memory.

> Update outputs
The output markers are copied fo the outputs only at
the end of a complete program processing cycle. Thus,
even if the outputs have been changed by the program
several times, only the last status will be output to the
relevant terminal.
Exception:
Assignments to byte output markers BOxx.xx immedia-
tely write their result into the output memories without
waiting for the process image to update the outputs.

> Internal PLC action
In certain cases, the CPU has to respond to requests
that are required for selftesting or for communication
with the programming PC.

37

Software

4.1.1.2 Minimum cycle time

38

The time it takes to complete a PLC cycle is shortest if the
PLC just processes the program.

Calculating the cycle time
> Sum total of execution times of module call commands

> Sum total of command execution times
(see table Set of Commands)

> Process image update: 25 ps

However, due to the possibility of using conditional module
calls and conditional jump commands (JPC...), the cycle ti-
me also depends on the internal and external states used
as conditions.

This gives the programmer the chance to optimise the pro-
gram runtime by cleverly arranging his program.

A clear project structure ensures that the PLC is only enga-
ged in operations that are relevant to the control process at
that time.

Another benefit ensues from storing the most frequently
used bit operands in the on-chip RAM, because accesses to
this memory are twice as fast as accesses to other types of
memory (> 3.10.5).

Software

4.1.1.3 Influence of timer interrupts on the cycle time

The programmable timers depend on highest precision.

This is ensured by a quartz crystal and the relevant fre-
quency dividers that generat impulses which, in turn, gene-

rate interrupts at the intervals set by the programmable ti-
mers (10 ms, 100 ms, 1's, 10 s).

If the timers are enabled, these timer interrupts lead to the
current time values being incremented or decremented
which means that the timer outputs may have to be adju-

sted. This is added to by the updating of the clock pulse
markers (C00.00-03).

Processing of the current program is therefore to be inter-
rupted, the contents of the CPU registers is to be saved and
stored for continuation later.

4.1.1.3.1 Extension of the cyle time

The amount of time by which the cycle is extended due to
the handling of timer interrupts depends on the number of
currently active programmable timers.

Worst case
Every 10 ms, the PLC cycle is extended by c. 2 ms if all of

the 32 possible timers have been programmed as clock
pulses with the same time on the basis of 10 ms and if they
are all enabled.

Best case

In the best case, the cycle time is extended by only 0.4 ms.

39

Software

4.1.1.4 Influence of communication on the cycle time

Both programming and testing online in the KUBES envi-
ronment and man-machine communication with operating
terminals demand data exchange via the V.24 port. this
communication is interruptcontrolled and can extend the
cycle time by up to 10%, given a transfer rate of 9600
baud.

Status information

In certain intervals, KUBES requests information from the
controller even if there is no actual communication:
Frequency: every 5s

Delay: T ms

Dynamic displays

The single address and address range displays, the logic
diagram or the dynamic display in the Module Editor allow
you to permanently read and display up to 256 operands.
You can reduce the resulting time load by either loading
fewer program lines into the Module Editor or by using the
single address instead of the address range display

Examples

> The dynamic display of 224 byte (14 lines with
C1T16 SMxx.xx) in the Module Editor can extend a pro-
gram cycle of 2 ms by another 2 ms (worst case).

> Having the address range display dynamically rea-

ding a complete marker range extends the cycle time by c.
0.5 ms.

40

Software

4.1.1.5 Changing the program in run mode, transmitting
a module

The user program can be changed without interrupting the
program run. When you transmit a changed module, the
controller needs some time to receive, interpret and insert
the module as well as to calculate its checksum.

Extension of cycle time: c. 10 %

Duration: depends on the length of program and the cycle
time

4.1.1.6 Restarting the controller after changes in Stop/
Reset mode

Modifying the program memory while the controller is in
Stop or Reset mode also modifies the checksum required
for the memory test. The checksum is calculated when you
restart the controller RUN). The controller will resume run

mode only when the checksum test has been completed
successfully.

41

Software

4.1.1.7 Programming

42

For programming and testing, connect the programming
PC with the appropriate interface as described in chapter
3.7.

Requirements

> PC running MS°Windows
> Programming software KUBES (part no. 680.502.00)
installed on the PC

» Programming cable (part no. 657.151.03)

— Connect with the PC’'s COM port as specified in KUBES
(- below, Fig. 9)

— Connect with the PLC's programming inferface

Data transfer rate

The transfer format is set to: 9600 bit/s,
8 data bits, 1 start bit, 1 stop bit, odd parity

W24 Paramelers
Forl
®COML T COM2 CCOMI T COM4
1 Only for monitor varsion 430 or higher I
Speed ity foommm et
500 | Boud B Data bits
1 Stop kit
_llﬂlity

Help-F1
" Ewen
& Odd LCancel

Fig. 9: KUBES interface parameters

Software

4.2 Operand ranges

All addresses used by the program for signal processing or

data storage are called operands. They are “operated”
with.

Eco Control 667 provides a large number of operands.
Please refer to the table in chapter 4.2.2.

43

Software

4.2.1 Definitions

44

Inputs

Signals that are fed into the controller and read by the user
program.

Outputs

Signals that are generated by the program in the controller
and picked up externally as control signals. They switch on
lamps, drives etc.

Markers

Signals that are used inside the controller for storing states
and supporting complex logical operations. There are two
types of markers:

> bit markers (1-bit signals) and
> byte marker (8-bit signals).

Timers

They control time processes.

Counters

They count events or increments output by pulse generators.

4.2.2 Summary of operands

Software

Operands Name | Max. | Bits Description
from to qgly.

100.00 101.15 Digital 32 1 [Max. I/O configuration depends on the

inputs model variant (> 3.1).
The process image of inputs and outputs is

000.00 |001.15 |Digital 32 1 Istored in the onchip RAM (> 3.10.5),
outputs therefore fast access

BI00.00 [BI00.03 [Byte 4 8 [For reading inputs directly by byte (wi-
inputs 4 8 [thout process image).

BO00.00 [BO00.03 [Byte For writing outputs directly by byte (wi-
outputs thout process image).

M00.00 [M02.07 [Fast bit 40 1 [Bit markers in the on-chip RAM (>
markers 3.10.5), therefore fast access

SM00.00 [SM15.15 [Bit markers | 256 1 [Bit markers. Divided into groups of 256

FM00.00 [FM15.15 256 1 [for better differentiation.

LM00.00 [IM15.15 256 1

R00.00 R15.15 Remanent 256 1 [Bit markers, stored remanently in the NV-

SRO0.00 |SR15.15 |bit markers | 256 1 RAM (> 3.10.4)

BM00.00 [BM15.15 [Byte 256 8 [Byte markers. Divided into groups of 256

SBM00.00 [SBM15.15 |markers 256 8 [for better differentiation.

BRO0.0O BR15.15 [Remanent 256 8 [Byte markers, stored remanently in the NV

SBROO.00 [SBR15.15 |byte 256 8 RAM (> 3.10.4)

BC00.00 [BC15.15 |markers 256 8

SBC00.00 [SBC15.15 256 8

BD00.00 [BD15.15 256 8

SBD00.00 (SBD15.15 256 8

FBM00.00 [FBM15.15 256 8

LBM00.00 [LBM15.15 256 8

ZBM00.00 [ZBM15.15 256 8

PLO0.00 Logical O 1 1 |Programmed logical signals, changing not

PL00.01 Logical 1 1 1 |possible.

PC00.00 |PC00.03 [Clock pulse 4 8 [Byte operands, incremented at pulse rates
marker 10ms, 100ms, 15, 10s.

PP0O0.00 [PPO7.15 |Progr. pulse| 128 1 [Evaluates the 0/1 changeover (edges) of

digital signals.

PT00.00 |PTO1.15 [Timers 32 16 [Programmable, range: 10 ms — 65535 s

C00.00 |C01.15 [Counters 32 16 Programmable, range: 10 - 65535

SLF, SLG... Special functions 8 [Partly reserved for monitor, KUBES modu-

les, additional modules

45

Software

4.2.3 Set operand functions
When you are planning your project, please take into ac-
count that some of the operands listed above have set func-
tions:

4.2.3.1 Operands reserved for monitor functions

Operand |Function

SLG14.00 |Internal use

SLG14.01 |Undervoltage monitoring (n * 10 ms)
SLG14.02 [Reads inputs in case of undervoltage
SLG14.03 |Internal use

SLG14.04 |Internal use

SLG14.05 |Generates the intermediate code
SLG14.06 [Transmitting projects: retains remanent data

& These operands must not be used for any other purposes.
Failure to obey may render the controller functions unsafe.

4.23.2 Operands reserved for KUBES modules

Eco Control 667E has no KUBES module parameters. Indi-
vidual KUBES modules use defined operands that you
should reserve in case you wish to use these operands.
Operand Used by KUBES module

BM00.00...03 [WR_OFFS, RD_OFFS

BMO1.00
FBM00.00...01
FBMO1.00...09 [V246671S, V246671E, V24667IN

& If you wish to embed one or several of the above KUBES
modules in your project, you must make sure that the rele-
vant operands are reserved for this purpse only.

46

Software

4.3 Description of commands

All operations are started by commands. They are execu-
ted in the accumulator of the CPU. Basic terms:

> Lload commands load a value into the accumulator

> logical operations link the operand value with the con-
tents of the accumulator

> Assignments write the contents of the accumulator into
the specified operands (in the case of bit operations: the
status of bit 7)

> Set commands set (S) or reset/clear (R) the contents of
the operand if the previous operation in the accumulator
results in “logical 1”.

47

Software

4.4 Types of operands

48

Eco Control 667E differentiates between three types of
operands which are marked by their size:

> Bit 1 bit
> Byte 8 bit
> Word 16 bit (2 byte)

The accumulator in the CPU of Eco Control 667E can be
used as a bit, byte or word register.

Bit operations are carried out like byte operations, the dif-
ference being that only bit 7 of the 8 bit accumulator is
evaluated.

Byte operations are executed in the same accumulator as
bit operations.

Word operations use a 16-bit accu whose low byte con-
tains the accumulator where bit and byte operations are
executed. Word operations are started by commands who-
se last character is a D (not applicable to byte inputs Blxx
and byte outputs Boxx).

To avoid mistakes we recommend that you do not use
different types of operands in operations that belong toge-
ther.

Software

4.4.1 Addressing

There are two different ways of assigning operand values:
> absolute value (constant)
> contents of an operands

Operand specifiers are made up as follows:

BMO00.00
Group mark Group number Channel number

You can use the mnemonic (symbolic name) previously as-
signed to an operands via KUBES’ Symbol Table Editor.

Complete commands (instructions) consist of a command
and an operand (rare exceptional cases have no operand):

Example

L BM00.00
Loads the contents of byte marker BM0O.00 into the accu.

49

Software

4.4.2 Summary of commands

The purpose of commands is to “operate” with the ope-
rands (see "4.2 Operand ranges").
Eco Control 667E provides a large number of commands.

They are listed and described in the tables starting on the
next page.

Memory requirements of commands

Normally, the user program is stored twice in the user pro-
gram memory:

> as machine code which is read by the processor;

> as intermediate code which is used for transfer actions
between PC and PLC in accordance with the KUBES proto-
col. Storing the intermediate code can be disabled by the
relevant instruction in the user program (= 3.10.2.1).

The “No. of bytes” table columns list the memory require-
ments for both cases.

50

Software

4.4.2.1 Llogical operation commands
Com- |Operand | No. of bytes |Proces- |Description
mand with | w/o s‘ing
interm. code fime{r}
L 100.00 5 2 2.0 |Load bit operand in on-chip
RAM (> 3.10.5)
SM00.00 % 6 6.0 |load bit operand
BMO00.00 9 6 6.0 |load byte operand (8 bit)
100 6 4 3.0 [|Load byte constant (8 bit)
LD BMO00.00 | 15 12 12.5 |load word operand (16 bit or
2 byte)
1000 20 7 5.0 |load byte constant (16 bit)
LN [00.00 6 3 3.0 |load and negate bit operand
in on-chip RAM (> 3.10.5)
SM00.00 | 10 7 6.0 |load and negate bit operand
BM00.00 | 10 7 7.0 |load and negate byte ope-
rand (8 bit)
A 100.00 5 2 2.0 |And bit operand in on-chip
RAM (= 3.10.5)
SM00.00 | 15 12 12.0 |And bit operand
BM00.00 | 13 10 10.0 |And byte operand (8 bit)
100 8 6 5.0 |And byte constant (8 bit)
AN [00.00 5 2 2.0 |And bit operand (negated) in
on-chip RAM (> 3.10.5)
SM00.00 | 16 13 13.0 |And bit operand (negated)
BM00.00 | 14 11 11.0 |And byte operand (negated)
(8 bit)
O [100.00 5 2 2.0 |Or bit operand in on-chip
RAM (= 3.10.5)
SM00.00 | 15 12 12.0 |Or bit operand
BM00.00 | 13 10 10.0 |Or byte operand (8 bit)
100 8 6 5.0 [Or byte constant (8 bit)

51

Software

Com- |Operand | No. of bytes |Proces- |Description
mand with ‘ w/o [sing
interm. code fime{r}
ON [00.00 5 2 2.0 (Or bit operand (negated) in
on-chip RAM (> 3.10.5)
SM00.00 | 16 13 13.0 (Or bit operand (negated)
BM00.00 | 14 11 11.0 |Or byte operand (negated) (8
bit)
XO 100.00 13 10 8.0 [Exclusive-Or (antivalence) bit
operand in on-chip RAM (>
3.10.5)
SM00.00 | 15 12 12.0 [Exclusive-Or (antivalence) bit
operand
BM00.00 | 13 10 10.0 [Exclusive-Or (antivalence) byte
operand (8 bit)
100 8 6 5.0 [Exclusive-Or (antivalence) byte
constant (8 bit)
XON [00.00 14 11 8.0 [Equivalence bit operand in on-
chip RAM (= 3.10.5)
SM00.00 | 14 11 13.0 [Equivalence bit operand
BM00.00 | 14 11 11.0 [Equivalence byte operand
(8 bit)

52

Software

4.4.2.2 Assignments and store commands

Com- |Operand | No. of bytes |Proc. |Description
mand with | w/o [time [ms]
interm. code
= 000.00 5 2 2.0 [Equal (assignment) to bit ope-
rand in on-chip RAM (>
3.10.5)
SM00.00 | 11 8 8.0 [Equal (assignment) to bit ope-
rand
BM00.00 % 6 6.0 [Equal(assignment) to byte
operand (8 bit)
=D BM00.00 | 17 14 16.0 [Equal (assignment) to word
operand (16 bit)
=N |000.00 7 4 4.0 [Equal to negated bit operand
in on-chip RAM (> 3.10.5)
SM00.00 | 13 10 12.0 [Equal to negated bit operand
BM00.00 | 11 8 8.0 [Equal to negated byte ope-
rand (8 bit)
S 000.00 7 4 3.0 [Set bit operand in on-chip
RAM (= 3.10.5)
SM00.00 | 11 8 8.0 [Set bit operand
R 000.00 7 4 3.0 Reset bit opernd in onchip
RAM (= 3.10.5)
SM00.00 | 15 12 12.0 [Reset bit operand
= Please also read the explanatory notes on the next page.

53

Software

54

Notes on assignments and store commands

> Assignments (=...)

Assignments write the contents of the accumulator into the
specified operand.

> Set command (S)

Writes “logical 1 into the specified operand if the prece-
ding operation in the accu resulted in “logical 1”. There is
no influence on the operand if the result in the accu was
“logical 0.

> Reset command (R)

Writes “logical 0" into the specified operand if the prece-
ding operation in the accu resulted in “logical 1”. There is
no influence on the operand if the result in the accu was
“logical 1”.

Software

4.4.2.3 Arithmetical operation commands

Com- |Operand | No. of bytes Proc. |Description
mand with | w/o |fime [ns]
Interm. code
ADD BMO00.00 | 11 4 8.0 |Add byte operand
100 6 8 3.0 |Add byte constant
ADDDBMO00.00 | 28 25 26.0 |Add word operand
1000 20 17 18.0 |Add word constant
SUB [BM00.00 | 13 10 8.0 [Subtract byte operand
100 7 5 3.0 [Subtract byte constant
SUBD BM00.00 | 30 27 28.0 [Subtract word operand
1000 21 18 18.0 [Subtract word constant
MUL BMO00.00 | 12 9 11.0 Multiply byte operand
100 9 7 7.5 Multipliy byte constant
MULDBMO00.00 | 18 15 | variable Multiply word operand
1000 16 13 | variable [Multiply word constant
DIV [BM00.00 | 17 14 12.5 |Divide byte operand
100 11 9 7.5 Divide byte constant
DIVD BM00.00 | 21 18 | variable |Divide word operand
1000 19 16 | variable |Divide word constant
= The contents of the accu is arithmetically combined with
the specified operand

The result of the operation is written into the accu. You
can either use it for further operations or assign it to an
operand.

55

Software

4.4.2.4 Comparison,- shift- and incrementation commands

Com- |Operand No. of bytes Proc. |Description
mand with | w/o |fime [ms]
Interm. code
CMP |BM00.00 | 24 21 16.0 [Compare with byte operand
100 19 17 11.0 [Compare with byte constant
CMPD BM00.00 | 44 41 38.0 [Compare with word operand
1000 40 37 30.0 [Compare with word constant
LSL No ope- 6 5 3.0 [8-bit shift left of contents of
rand accu
LSR |No ope- 6 5 5.0 [8-bit shift right of contents of
rand accu
INC BM00.00 | 13 10 12.0 [Increment byte operand (con-
tents + 1)
DEC |BM00.00 | 13 10 12.0 |Decrement byte operand (con-
tents - 1)
INCD [BM00.0O | 45 42 45.0 |Increment word operand (con-
tents+ 1)
DECD [BMO00.00 | 45 42 45.0 |Decrement word operand
(contents - 1)
CIR [BM00.00 | 14 11 14.0 [Clear byte operand
NOP [No ope- 2 1 1.0 [Dummy instruction
rand
= Please also read the explanatory notes on the next page.

56

Software

Notes on comparison, shift and incrementation

commands

» Compare (CMP...)

Compares the contents of the accu with the contents of the
operand. The result is set as internal flag which is evalua-

ted by jump commands (see "4.4.2.5 Jump commands").

> Shift (LS...)
Shifts the contents of the accu by one place.

» Increment (INC...), Decrement (DEC...)
Increments or decrements the contents of the accu by 1.

57

Software

4425 Jump commands

Com- |Operand No. of bytes |Proc. |Description

mand with | w/o [time [rs]

Interm. code

JP Label 12 | 10 5.0 |Unconditional jump to spe-
cified label

JPC [Label 14 | 12 6.0 |Conditional jump (if logical
1) to specified label

JPCN |Label 14 | 12 6.0 [Conditional jump (if logical
0) to specified label

JP= Label 12 | 13 6.0 Jlump to specified label if
equal (after comparison)

JP<> |Label 15 | 13 6.0 JJump to specified label if
not equal (after compari-
son)

JP< Label 18 | 16 7.5 Jlump to specified label if
smaller (after comparison)

JP> BM00.00 15 | 13 7.5 Jlump to specified label if
greater (after comparison)

JP<= [Label 18 | 16 7.5 Jlump to specified label if
smaller or equal (after
comparison)

JP>= |Label 18 | 16 7.5 Jlump to specified label if
greater or equal (after
comparison)

JPP Program modu-| 5 3 18.0 |[Unconditional jump to spe-

le cified program module

JPCP |Program modu-| 9 7 18.0 |Conditional jump (if logical

le 1) to specified program
module

58

Software

Com- |Operand No. of bytes |Proc. |Description
mand with ’ w/o [time [1ms]

Interm. code

JPK |KUBES module | 7 3 18 [Unconditional jump to spe-
cified KUBES module

JPCK |[KUBES module | 11 7 18 |Conditional jump (if logical
1) to specified KUBES mo-
dule

= Jumps in the program immediately move program proces-
sing to the destination line. This can be either a so-called
label (i.e. a symbolic jump mark) or another module.

> Conditional jumps (JPC...)

The jump is taken if the preceding operation resulted in
“logical 1" or “logical 0" (JPCN).

> Jumps after comparison (JP= to JP>=)

The jump is taken if the contents of the accu has the speci-
fied mathematical relation to the operand.

59

Software

4.4.2.6 Copy commands

Com- |Operand No. of bytes | Proc. |Description
mand with | w/o |time 3]
Interm. code
C178 [100.00 7 4 | 3/350 |Copy 8 bit operands from
the on-chip RAM
(= 3.10.5) to the accu
SM00.00 8 5 200 |Copy 8 bit operands to the
accu
C8T1 |000.00 5 2 | 1/400 (Copy the contents of the
accu to 8 bit operands in
the on-chip RAM (>
3.10.5)
SM00.00 8 5 200 (Copy the contents of the
accu to 8 bit operands
C1T16 [100.00 10 7 | 5/650 |Copy 16 bit operands from
the on-chip RAM
(= 3.10.5) to the accu
SM00.00 8 5 300 |Copy 16 bit operands to
the accu
C16T1 [©00.00 8 5 | 3/750 |Copy the contents of the
accu to 16 bit operands in
the onchip RAM (>
3.10.5)
SM00.00 8 5 300 [Copy the contents of the
accu to 16 bit operands
= Please also read the explanatory notes on the next page.

60

Software

Notes on the copy commands

Copy commands are used to parallely load the contents of
8 or 16 bit operands into the accu or write the contents of
the accu into 8 or 16 bit operands.

Practical applications:
> reading binary or BDC values via inputs
> controlling numerical displays (e.g. 7-segment display)

The time it takes to process copy commands depends on
the last number of the bit operand’s channel number.

The channel number is indicated after the separating point:
100.00

channel number

Processing time is shorter if the channel number ends with
Oor8.

Example 1

C178 100.00 => processing time: 3 ps
Example 2

C178 100.13 => processing time: 350 ps

61

Software

4.4.2.7 Programmable pulses , timers and counters

Com- |Operand No. of bytes | Proc. |Description
mand with | w/o | fime
Interm. code (]

= PPO0.00 11 8 42 |Activate pulse at
positive edge
(0/1)

=N |PP00.00 11 8 42 |Activate pulse at
negative edge
(0/1)

L PP00.00 % 6 6 |oad pulse

A,O.. PP00.00 13 10 10 [link pulse

= PTO0.00:1000* 1s:E " 16 8 32 [Start timer with
const. preset value

= PTO0.00:BM00.00*1s:E" | 34 | 26 | ~60 [Starttimer with
variable preset
value
(BM00.00+01)

L PT00.00 9 6 6 |Load timer output

A,O.. PT00.00 13 10 10 [Link timer output

LD [PTO0.00 15 12 | 12.5 |load current timer
value

=TH |PT00.00 26 | 23 22 Halt timer (without
clearing if)

= C00.00:10000:V " 14 6 35 |Start counter with
const. preset value

= C00.00:BM00.00:V " 32 | 24 | ~60 |Start counter with
var. preset value
(BM00.00+01)

62

Software

Com- |Operand No. of bytes | Proc. |Description

mand with ‘ w/o | fime
Interm. code (]

L C00.00 9 6 6 |lLoad counter out
put (count at preset
value)

A, |C00.00 13 10 10 [Link counter output

O...

LD |C00.00 15| 12 | 12.5 Read current coun-
ter value

=C |C00.00 9 6 25 |Assign pulse signal

1) Adding “R” to the operand declaration makes the current timer or

counter value remanent (> 3.10.4).

Example: “ = PT00.00:1000:1s:E:R"

= Please also read the explanatory notes on the next page.

63

Software

64

Notes on programmable pulses, timers and coun-
ters

These are more or less special forms of the commands de-
scribed earlier. For a more detailed description refer to
chapter “6 Examples”.

> Programmable pulse

When a wipe pulse has been set (=, =N...) and the corre-
sponding code line is skipped, the output signal will be re-
tained until the line is processed again.

> Remanence

The “R” operand supplements listed in the table are optio-
nal parameters. Add them if you wish a timer or counter to
be remanent (when you stop or reset the controller, the cur-
rent (time) count will be stored and retrieved when you re-
start the controller).

> Timers
Once started, timers run regardless of whether the corre-
sponding code line is being processed or not.

Software

4.5 Programming modules

The user program of Eco Control 667E is structured by
modules. This helps you to break up the technological pro-
blem to be controlled into separate part tasks. The modules
form a hierarchical system (at max. 5 levels) that allows
modules at higher levels to call modules at lower ones. A
program of this structure is very clear and helps a lot with
understanding or updating of finished programs. The fol-
lowing types of modules are available:

> organisation module
> program modules
> KUBES modules

Processing of individual modules is monitored by a
watchdog which is triggered every time a module is called.
After that the system has 70 ms to process the module.

Program and KUBES modules are subroutines. The return to
the calling module is ensured by the module organisation
and must not be programmed separately. Modules must
not call themselves.

The maximum length of a module is 128 instructions. To
these you may add extra comment lines so that the maxi-
mum number of lines is 253.

65

Software

4.5.1 Organisation module

Function: organises the other modules
Name: ORG
Quantity: 1
It is practical if the ORG module contains the program se-

lection and calls of the modules that are relevant to the
overall task. All PLC instructions can be used without limita-

tion.

4.5.2 Program module
Function: PLC program module for a separate part task.
Organises the next module level.
Name: Optional
Quantity: Max. 255

4.5.3 KUBES module

Function: Library module for the solution of a specific,
defined basic task. KUBES modules are pro-
grammed by Kuhnke in a high-level language
and added as code to a library.

Name: Set

Quantity: Max. 255

66

Software

4.5.4 Module hierarchy

Fig. 10: Module hierarchy, example

Notes on the illustration

> Hierarchy levels

The example above uses all of the 5 available hiearchy
levels by linking

ORG - PRO2 > PRO 3 > PRO 4 > PRO 5

» Terminating modules

KUBES modules (here: KUB 1) are terminating modules. No
other modules can be called from there.

67

Software

68

KUBES modules

5 KUBES modules

KUBES modules are subroutines translated into machine
code. Their job is to solve compley tasks that program mo-
dules written by the user can solve only with difficulties or
not at all.

Reserved operands

The KUBES modules of Eco Control 667E accept no para-
meters. Data is exchanged via reserved operands (=
4.2.3) which must not be assigned to any other addresses
by the user program if the relevant KUBES modules are
being used.

Standard modules

A set of standard KUBES modules is automatically installed
together with KUBES.

Special modules

There is the option of delivering customised software soluti
ons in the shape of KUBES modules. They are delivered
separately and installed in the PC by means of BIBS, the
library service program (part of the KUBES software
package).

Feel free to contact us if and when required.

69

KUBES modules

5.1 KUBES module libraries

KBUES modules are combined in libraries which are stored
in the KUBES program root created when installing KUBES.

Hard disk arrangement of KUBES

_|—\Progr0m root inc.
1 o KUBES module libraries

Main project directory

Project directories

_M\Module library
_Il Library folder

Fig. 11: Hard disk arrangement of KUBES

The KUBES module library is called:
> KULIB667.LIB

Other libraries are available. They apply to Kuhnke's other
controllers which we do not want to discuss at this point.

KUBES automatically chooses the correct library for the
project work. You are obliged to specify the type of con-
troller when you open a new project. KUBES uses this in-
formation for library selection.

The type of controller to be chosen for Eco Control 667E is
1166711.

70

KUBES modules

5.1.1 Contents of the KUBES module library
Library “KULIB667.LIB” not only applies to Eco Control
667E as described in this manual but also to the older ty-
pes, Pico Control 667 and Compact Control 667.
Please note that some modules in the library can be used
for the last two devices only, because they can be configu-
red with an additional module if and when required.
The table lists the available modules in alphabetical order:
KUBES module | Used in Eco Control 667E | Function
CNT_ENC no Counter functions for the
CNT EVENT add. “counter” module
RD_OFFS yes Read with offset
SST667IN V.24 communication:
send strings
V24667IE V.24 communication:
receive individual char.s
V246671 V.24 communication:
send individual char.s
V24667ST no Communication via addi-
V24667XE tional “V.24" module
V24667XS
WR_OFFS yes Write with offset

The library can be viewed in KUBES:

> Module Editor
> Open “Module” menu

» Choose “KUBES modules”

71

KUBES modules

5.1.2 Loading KUBES modules

The required KUBES module is started by a jump command
at the appropriate place in the user program (organisation
or program module):

> JPK <nmodul e name>

Absolute jump. It is taken every time the microprocessor
reads the program line. The module is not called if a jump
skips the program line.

or

> JPCK <nmodul e name>

Conditional jump. It is only taken if the preceding operat
on results in “logical 1”. The module is not called if a jump
skips the program line.

72

KUBES modules

5.2 Communication modules

Communication modules allow you to use the program-
ming interface for simle data traffic.

There are three KUBES modules available for this task:

> V246671S
Sends single characters
> V24667IE

Receives single characters

>

V24667IN

Sends strings (data ranges)

The data transfer format is set and cannot be changed:

>

>
>
>

8 data bits

1 stop bit

no parity check
1200 bit/s

73

KUBES modules

5.2.1 Reserved operands
Suggested |Address Used by |Value " |Function
symbol KUBES mod.
INIT_V24 [FBMO1.00 [V246671S, [K:255 V24 mode settings ok
RES_1 FBMO1.01 |[Y24667IE, . cn> Internally used marker
KUBES |FBMO1.02 V24867IN V24 mode:
U:255 Programming/KUBES prot.
U:0 Communicating
FBMO1.03 NV246671S |U:<Chr> [Char. to be sent
FBMO1.04 [V246671S, [U:255 |[Start transfer
V24667IN_ K: O Acknowledge
REC_CHR [FBMO1.05 |V24667IE [K:<Chr> |Char. to be received
FBMO1.06 K:255 Character received
U:0 Acknowledge
FBMO1.07 [V24667IN [K:<n> |[Internal counter of bytes sent
FBMO1.08 U:<n> [Qty. of data bytes (1...230)
SDATA [FBM01.09 U:<Dat> [Data field to be sent
to
FBM15.15

" K: KUBES module writes

U: user writest

A

These operands are reserved for the described functions.
They must not be used for any other purposes if the rele-

vant KUBES modules are embedded in the program.

74

KUBES modules

5.2.2 V.24 mode settings

Reserved operand “FBMO1.02" enables communication.
This operand’s status decides whether the KUBES protocol
in programming mode (also supporting communication
with suitable dialogue terminals, for example) or the com-
munication mode is activated:

Operand | Status | V.24 mode
FBMO1.02 |255 Programming (KUBES protocol)

0 Communicating by means of the
KUBES modules described below

& To switch over to communication mode please make sure
to use an external input as suggested in the example pro-
gram below (& 5.2.6). Failure to comply may permanent
ly disable the programming mode.

The chosen mode becomes active as soon as at least one
of the KUBES modules has been run.

> The KUBES module acknowledges the change of set-
tings:
[FBMO1.00] € 255

& Clear operand (FBMO1.00) at the start of the program

because it is undefined when you switch on the controller.

= Example program (& 5.2.6) lines 3...26

75

KUBES modules

5.2.3

5.2.3.1

76

Sending single characters (V246671S)
KUBES module: V246671S

Length: 66 byte
Processing time: c.50m
Function: send single character

Program structure

1. User chooses V.24 mode (25.2.2)

2. User verifies that no character is being sent
[FBMO1.04] > 0 ¢

3. User specifies the character to be sent
[FBMO1.03] € <character to be sent>

4. User starts data transfer
[FBMO1.04] € 255

5. KUBES module acknowledges when transfer is done
[FBMO1.04] € O

Step 1 only needs to be taken once to enable communica-

tion. It is the same for sending and receiving data.

Afterwards, steps 2...5 can be taken any number of times,

also alternating with receiving actions.

Example program (& 5.2.6) lines 34...50

KUBES modules

5.2.4 Receiving single characters (V24667IE)
KUBES modules: V246671E

Length: 106 byte

Processing time: c.90m

Function: receive single character
5.2.4.1 Program structure

1. User chooses V.24 mode(—=5.2.2)

2. User checks whether a character was received
[FBMO1.06] = 255 2

3. User reads the character received
[FBMO1.05] = <character received>

4. User acknowledges reception

[FBMO1.06] € O
Step 1 only needs to be taken once to enable communica-
tion. It is the same for sending and receiving data.
Afterwards, steps 2...4 can be taken any number of times,
also alternating with sending actions.

= Example program (& 5.2.6) lines 75...83

77

KUBES modules

5.2.5

5.2.5.1

78

Sending strings (SST667IN)
KUBES module: SST667IN

Length: 104 byte
Processing time: c.60m
Function: send strings (of characters)

Program structure

1.
2.

User chooses V.24 mode (2 5.2.2)

User verifies that no strings are being sent
[FBMO1.04] > 0 ¢

User writes the data to be sent into the data field
[FBMO1.09 ff] € <data bytes to be sent>

User specifies the quantity of data bytes
[FBMO1.08] € <quantity of data bytes to be sent)

User starts transfer
[FBMO1.04] € 255

KUBES module acknowledges when transfer is done
[FBMO1.04] € O

Step 1 only needs to be taken once to enable communica-
tion. It is the same for sending and receiving data.
Afterwards, steps 2...6 can be taken any number of times,
also alternating with receiving single characters.

Example program (& 5.2.6) lines 52...73

KUBES modules

5.2.6 Example program “serial communication”

This program uses all KUBES modules available for serial
communication.

=—======= KUBES
Project structure
Project : 667_COW Net wor k
created : Aug 19 1998 10: 03
User : changed : Aug 19 1998 16: 39

Comment: 667E: Data communication via V.24

ORG ORG 1

!r >SST6671 N. KNK/ 6
L ------ >V246671 E. KNK/ 9
!r >V246671 S. KNK/ 10

79

KUBES modules

==== KUBES
Organi sation nodule 1L
Project : 667_COW Net wor k
Modul e @ ORG No.: 1 created : Aug 19 1998 10: 03
User : changed : Aug 19 1998 16:41

e R R Data conmmunication test program-----------------
2:
3: ; Enable V.24 node
4: ; ================
5: ; Cear operand FBW1.00 first (process once only)
6: L I'NI_MRK MDO.00 ; (initialisation narker)
7: JPC MCDE_SEL
8: L 0
9: = V24_ K FBMD1.00 ; (255 = V24 node enabl ed)
10: L PL0OO. 01
11: = I'NI_MRK MD0.00 ; (initialisation marker)
12: JP END_COM
13: ; Choose node (process cyclically)
14: MODE_SEL L V24_MODE 100.00 ; (O=programm ng, l=communic.)
15: JPCN PROG
16: COW L 0 ; comuni cati on node
17: = KUBES FBMD1. 02 ; (255 =programing, O=conmunic.)
18: JP RUN_V24
19: PROG L 255 ; programmi ng node
20: = KUBES FBMD1. 02 ; (255 =programing, O=communic.)
21: ; Start KUBES nodul e "send single character”
22: RUN V24 JPK V246671 E ; single character received
23: ; Mode enabl ed?
24: L V24_ K FBMD1.00 ; (255 = V24 node enabl ed)
25: awP 255
26: JP<> END_COM ; no -> junp
27:
28: ; Send single characters or strings?
29: ;
30: SND MDD L SND_MCDE 100.01 ; (O=single char., 1=strings)
31: JPCN S SINGLE ; send single character
32: JPC S STRI NG ; nmodul e: send strings
33:

80

34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:
49:
50:
51:
52:
53:
54:
55:
56:
57:
58:
59:
60:
61:
62:
63:
64:
65:
66:
67:
68:
69:
70:
71:
72:
73:
74:

; Send single characters
; Specify transfer interval
S SINGLE L T00. 02
cwP SBMDO. 00
JpP= REC
= SBMDO. 00
; Send
SEND JPK V246671 S
L SND_RUN
JPC END_SNGL
L PC00. 02
= SND_CHR
C8T1 Q00. 08
L 255
= SND_RUN
END_SNGL JP REC
; Send strings
; Specify data to be sent (here:
S STRI NG JPK SST667I N
L $02
= SDATA
L 'S
= FBMD1_10
L 'P
= FBMD1_11
L 'S
= FBWD1_12
L $03
= FBMD1_13
LENGTH L 5
= SDAT_LEN
; Send
SEND_STR L SND_RUN
JPC END_STRG
L 255
= SND_RUN
END_STRG NCP

(every second)

FBMD1.
FBMD1.

FBMD1.

FBMD1.
FBMD1.
FBMD1.
FBMD1.
FBMD1.
FBMD1.

FBMD1.

FBMD1.

04 ;

03 ;

04 ;

09 ;

10 ;

11

12

13 ;

08 ;

04 ;

04 ;

KUBES modules

current val ue

ol d val ue

second not passed yet
store new val ue

KUBES nodul e

(255 =start transfer, O=ackn.)
still sending

clock gen. value as s_char.
(character to be sent)

show SND CHR at out puts

(255 =start transfer, O=ackn.)

" <STX>PLC<ETX>")

KUBES nodul e
STX (Start of Text)
(start of s_data field)

(data to be sent)
(data to be sent)
(data to be sent)
ETX (End of Text)
(data to be sent)
length of data to be sent

(qty. of s_data bytes)

(255 =start transfer, O=ackn.)
still sending

(255 =start transfer, O=ackn.)

81

KUBES modules

75:
76:
7
78:
79:
80:
81:
82:
83:
84:
85:
86:
87:
88:

82

; Receive single character
REC L REC_RUN
cwP 255
JP<> END REC
L REC CHR
C8T1 A00. 00
CLR REC_RUN
END REC NCP
; End of communi cation program
END COM NCP

FBM1. 06 ;

FBM1. 05 ;

FBM1. 06 ;

(255 =receive char., O=ackn.)

(received character)
show REC CHR at out puts

(255 =char.

recei ved, O=ackn.)

KUBES modules

5.3 Copying data (blocks)

The two KUBES modules described next serve the following
purposes:

> KUBES module “RD_OFFS”

reads a specified operand range

> KUBES module “WR_OFFS”

writes info a specified operand range

> both KUBES modules

copy data from one operand range to another

The operand range is accessed via its intermediate code
address (= 5.3.2). You can add an offset to address 1 (or
two in the case of word operands) particular operand in
the range.

5.3.1 Reserved operands

Suggested |Address Used by KUBES|Function

symbol module

WR_SRC [BM00.00...01 WR_OFFS Data source (2 byte)

RD_DEST [BM00.02...03 RD_OFFS Data destination (2 byte)

OFFSET ~ BMO01.00 RD_OFFS and [Pointer (offset) to an address in
WR_OFFS the operand range

ADDRESS [FBM00.00...01 RD_OFFS First address of the operand
WR_OFFS range

A

These operands are reserved for the described functions.

They must not be used for any other purposes if the rele-

vant KUBES modules are embedded in the program.

83

KUBES modules

5.3.2 Operands’ intermediate code addresses

The operands can only be accessed directly if the normal
mnemonic (M00.00, SBM03.15...) is used.

Internal markers can only be accessed indirectly by means
of their intermediate code addresses:

84

Operand range Intermediate code
address

(hexadecimal)

Start End Start End
R00.00 R15.15 $0100 | $OTFF
BM00.00 BM15.15 | $0200 | $O2FF
SBM00.00 | SBM15.15 | $0300 | $O3FF
BRO0.00 BR15.15 $0400 | $O4FF
SBR00.00 SBR15.15 $0500 | $O5FF
$0600 | $O6FF
ABMO00.00 | ABM15.15 | $0700 | $O7FF
FM00.00 | FM15.15 | $0800 | $O8FF
$0900 | $O9FF
SR00.00 SR15.15 $0A00 | $OAFF
BC00.00 BC15.15 | $OBOO | $OBFF
SBC00.00 | SBC15.15 | $0CO0 | $OCFF
BD00.00 BD15.15 | $0DOO | $ODFF
SBD00.00 | SBD15.15 | $OEOO | $OEFF
LBM00.00 | LBM15.15 | $OFOO | $OFFF

KUBES modules

5.3.3 Reading data (RD_OFFS)
KUBES module: RD_OFFS

Length: 58 byte
Processing time: c.89m
Function: read operand data
First address Operand range
.
' FBM00.00...01 0
1
2
Offset:f{ BMO1.00 | 3
4
. A N
——» 0+Offset Data BM00.02

0+Offset+1 BMO00.03

Fig. 12: KUBES module "RD_OFFS"

5.3.3.1 Program structure

> Specify the first address of the source operand range

for reading
[FBM00.00...01] € <intermediate code address>

> Set the offset of an address in the range (O = first)
[BM01.00] € <offset>

» Start KUBES module RD_OFFS

> Evaluate 1 or 2 byte of data
[BM00.02...03] = <evaluation>

= Example program (& 5.3.5)

85

KUBES modules

5.3.4 Writing data (WR_OFFS)
KUBES module: WR_OFFS

Length: 74 byte
Processing time: c.33m
Function: write data into operand
Operand range First address
Ay ﬁ
0 < FBM00.00...01
1
2 BMO1.00 ' Offset
3
a—— y
Ay
BM00.00 D 0+Offset
ata

BM00.01 0+Offset+1

n

Fig. 13: KUBES module "WR_OFFS"

5.3.4.1 Program structure
> Provide 1 or 2 byte of data
[BM00.00...01] € <data>

> Specify the first address of the target operand range
for writing
[FBM00.00...01] € <intermediate code address>

> Set the offset of an address in the range (O = first)
[BM01.00] € <offset>

» Start KUBES module WR_OFFS
= Example program (& 5.3.5)

86

KUBES modules

5.3.5 Example program “copy data block”

This program is to copy 16 byte of data. The source and
target ranges are very near each other so that the program
can be easily tested by means of KUBES' Address Range
display function:

Data ranges First address
(interm. code)

Source | SBM00.00...SBM00.15 | $0300
Target | SBM01.00...SBM01.15 |$0310

We took the first intermediate code address of every range
from the table in chapter (> 5.3.2).

Proceed as follows:

> Write and transmit program (see next page)
> Start controller (RUN)
> Display Address Range, choose “byte markers SBM”

o = Dol
Dhipiey Gl I Bepef] Rt
80 Bl B2 B3 04 05 06 67 68 68 18 41 12 13 1% 18

Flul 111 215 90
8w 111 215 190
FLL kS
SOM03
SBmby
SBHOS
SBR0E
SAHDT
Bl
SEMaY
ShHIE
sBki1
SBHIZ
SBH13
SAHI Y
SEHLS 1

m 2 m 3% m2nm B 1M NnsE &
M 2198 3B mzinm| B N5 B
[}

enn

CooocoocoDD oo o DD
CooococococDD oo ooD
CDooCcoooDD oo oD D
Do ococoeooD ocooan
ERR— NN -k
SRR N- NN
e o RERE e aE
EEeSoooeeR oD
SEEosoReR oo
CREE-EERR R R
=R R R]
RN R]
LE-E BN N N N NN N N K N
LE-RC_ B N B NN N
SSSSSocScoooocsSsoo

> Set and reset input 100.00.
After a short while you will find the data in SBM01.00...15
and SBM00.00...15 are identical (see screen dump).

87

KUBES modules

==== KUBES
Proj ect structure
Project : 667_CCPY Net wor k
created :
User : changed :

Conment: 667E: Copy data bl ock

Aug 17 1995 11:28

Aug 17 1998 09: 59

ORG ORG 1

L >RD_OFFS. KNK/ 3
Lo >WR_OFFS. KNK/ 4
l* >DAT_SET. PRO 1

88

KUBES modules

==== KUBES
Organi sation nodule IL
Project : 667_COPY Net wor k
Modul e . ORG No.: 1 created : Aug 17 1995 11:28
User : changed : Aug 17 1998 08: 47
1o mmmmmmm e Test program "Copy data bl ocks" -----------------

L R

3: ; To be able to easily repeat the test, the provided data is nodified
4: ; by a randoni zer via 100.00 (see nodul e "DAT_SET").

L R

6:

7: ; Junp to "Provide data"

B, s

9: L SET_DAT 100.00 ; (set data)

10: JPCP DAT_SET 1

11:

12: ; First steps

130 e-emeee-e-

14: ; dear offset nenory to be on the safe side

15: CLR OFFSET BMD1.00 ; (points to oper. in data field)
16:

17: ; Specify length of data fields (here: BWMD1.01 chosen)

18: L 16 ; 16 byte

19: = DAT_LEN BWD1.01 ; (length of data fields)

20:

21: ; Program for copying (designed as a | oop)
A T

23: LOOP NOP

24: ; Specify start of source nmenory (SBMDO. 00)

25: SQURCE LD $0300 ; interm code of 1st source addr.
26: =D ADDR 1 FBMDO. 00 ; (1°' addr. of operand range)

27: JPK RD_OFFS ; source data to BWMDO.02...03

28: ; Transfer data

29: LD DATA_RD BMD0. 02 ; (data from source nenory, byte)
30: =D DATA VIR BMDO. 00 ; (data to target nenory, byte 1)
31: ; Specify start of target nenory (SBMD1.00)

32: DEST LD $0310 . interm code of 1% target addr.
33: =D ADDR 1 FBMDO. 00 ; (1%' addr. of operand range)

34: JPK WR_CFFS ; data from BMDO.00...03 to target
35: ; Increnment offset (tw ce because your’re copying by word

36: INCOFFS |INC OFFSET BWMD1.00 ; (pointer to oper. in data field)
37: INC OFFSET BWMD1.00 ; (pointer to oper. in data field)
38: ; Conpl ete range copied?

39: L OFFSET BWMD1.00 ; (pointer to oper. in data field)
40: awP DAT_LEN BWD1.01 ; (length of data fields)

41: JP< LOCOP ; no -> get next set of data

42: END_COPY NCP

89

KUBES modules

==== KUBES
Program nodule IL
Project : 667_COPY Net wor k
Modul e : DAT_SET No.: 1 created : Aug 14 1998 16: 47
User : changed : Aug 19 1998 09: 37

Comment: Provide data

1: ; A Kkind of random zer wites the contents of the internal clock pul se
2: ; generators into byte markers SBMDO.00...15 while the nodul e is running
I R R R EE R LR
4: L PC00. 00
5: = SBMDO. 00
6: L PC00. 01
7 = SBMDO. 01
8: L PC00. 02
9: = SBMDO. 02
10: L PC00. 03
11: = SBMDO. 03
12: L PC00. 00
13: = SBMDO. 04
14: L PC00. 01
15: = SBMDO. 05
16: L PC00. 02
17: = SBMDO. 06
18: L PC00. 03
19: = SBMDO. 07
20: L PC00. 00
21: = SBMDO. 08
22: L PC00. 01
23: = SBMDO. 09
24: L PC00. 02
25: = SBMDO. 10
26: L PC00. 03
27: = SBMDO. 11
28: L PC00. 00
29: = SBMDO. 12
30: L PC00. 01
31: = SBMDO. 13
32: L PC00. 02
33: = SBMDO. 14
34: L PC00. 03
35: = SBMDO. 15
36:

90

Examples

6 Examples

6.1 Basic functions

6.1.1 AND
Wiring diagram Logic diagram Instruction list
[00.00 00.00
100.01 L 100.00
00,01 [& | A 100.01
000.00 = 000.0
0
TOO0.00
6.1.2 OR
Wiring diagram Logic diagram Instruction list
| | 00.02
m.mm 100.03 L 100.02
O 100.03
000.01 = 000.01

IJIJOOO.(H

91

Examples

6.1.3

Wiring diagram

Negated input

I7‘I00.O4

El:l 000.02

6.1.4 Negated output

Wiring diagram

|
100.05

I:fl 000.03

92

Logic diagram Instruction list

100.04
LN 100.04

= 000.02
000.02

Logic diagram Instruction list

10006 L 100.05

=N 0O00.03

00003

6.1.5

NAND

Wiring diagram

! 100.06

100.07

El]-—‘

-

7

El:l 000.04

6.1.6

NOR

Wiring diagram

Logic diagram

Examples

Instruction list

00.06
100.07

000.04

Logic diagram

L 100.06
A 100.07
=N 000.04

Instruction list

\T 100.08 ! 100.09

EIZIOOO.OS

00.08
100.09

L 100.08
O 100.09
=N 000.05

93

Examples

6.1.7 XO: exclusive OR (antivalence)

Wiring diagram Logic diagram Instruction list
00.10
0o L 100.10
XO 100.11
= 000.06
000.06

6.1.8 XON: exclusive NOR (equivalence)

Wiring diagram Logic diagram Instruction list
! L
100.12 00.12
i - L 100.12
‘—7100.13 XON 100.13
= 000.07
000.07

El:l 000.07

94

6.1.9 Sealin circuit

Wiring diagram

[I00.14 T000.08

100.16

000.08

Logic diagram

Examples

Instruction list

00.14
000.08

>4
100.15

&
E000.08

100.14
000.08
100.15
000.08

95

Examples

6.2 Memory functions

6.2.1 Mainly resetting

Logic diagram Instruction list
— 100.00
o001 L 100.00
|_ ' S 000.09
>0 L 100.01
. R 000.09
—000.09

6.2.2 Mainly setting

Logic diagram Instruction list
10002 L 100.03
|_'°°-3 R O00.10
& L 100.02
4 S 000.10
L000.10

96

6.3 Switching circuits

6.3.1 OR-AND circuit

Wiring diagram Logic diagram

Examples

Instruction list

l|00.04 100.05 00.04
I 100,05
100.06 >
100.06
i
o001

oeo

6.3.2 Parallel circuit to output

100.04
100.05
100.06
O00.11

Instruction list

Wiring diagram Logic diagram
T7’|oo.o7 00.07
10013
10013 &
—000.12
| 100.14
100.4 I:‘I(ﬁ
00013 00013

El:l 00012

> Z

>

100.07
100.13
000.12
100.14
000.13

97

Examples

6.3.3 Network with one output

Wiring diagram Logic diagram Instruction list
1 1 10015
10015 100.00 \O00.4 100.00 L 100.15
[
00,01 ON 100.00
R 5'00-01 A 100.01
L& 000.14
7100.02 000.14 AN 100.02
[
= 000.14

EfIOOO.M 10002
&
_EOOO.M

98

6.3.4 Network with outputs and markers
Wiring diagram

[| [[
1002\ M00.02 \I0016 \ M00.03 \MO0.02 '7‘M00.oz

100.00 \ M00.03
10013 7M00.02

7100.14 /100,14

ElZIMO0.0Z El:MO0.0S 000.04 I:l:IOO0.05

Examples

Logic diagram Instruction list
10042 10015 L 10012
00.02 M00.03 O MO00.02
>1 100.13 >q MO0.02 AN 100.13
100.14 100.14 AN 100.14
E% E% = MO00.02
M00.02 MOQ.03 L 100.15
O MO00.03
M00.02 M00.02 AN M00.02
5 10000 L [M0o03 AN 100.14
& | & = M00.03
000.04 Q00.05 L MO00.02
AN 100.00
= 000.04
IN MO00.02
A MO00.03
= 000.05

99

Examples

6.4 Special markers used as AND/OR marker

6.4.1 Network with OR marker
Wiring diagram Logic diagram
looor | 10008 Tooot | 10003 | sMi515 100.01 100.03
]]] 100,02 5|00.04
10002 \ 10004 10002 \ 100.04 [&] &
|:> SMI5.15
2]

000.06

I:l:l SMiG.16 Hlj 000.06 000,06

Instruction list

L
A

100

100.01
100.02
SM15.15
100.03
100.04
SM15.15
000.06

Note:

Definition:

In this example, a part result

is to be briefly stored.

Always use special marker
SM15.15 because it can be

used again in other networks.

OR marker=SM 15.15

Examples

6.4.2 Network with AND marker

Wiring diagram Logic diagram
I I l I ! I 10006 100.07
\miﬂ 10006 \10006\ 100.06 \.|00.07 \ 100.08 00,06 | 00,08
swisie L3 &
%ﬂ oocs) MEL
L0007 CSME4 000,07 000,07

Instruction list

Note: In this example, too, a result is
L 100.05 to be stored briefly in a special
') 100.06 marker which is AND connec-
' fed.
- SMI5.14 ©
L 100.07
O 100.08 Definition: Always use special marker
A SM15.14 SM15.14 as AND marker.
= 000.07

AND marker = SM 15.14

101

Examples

6.4.3 Network with multiple use of the OR marker

Wiring diagram Logic diagram

100.00 100.02 00.04 100.06
]'0000 TOO 02 00.01 100.03 |oo 05 10007
| & | [& & |

100.01 \100.03
SM16.16 SMi5.15

IOO 04]IOO .06

|oo 100.07 21 21
000.09 SMI5.14

Instruction list 000.09
L 100.00
A 100.01
SM15.15 ‘OR marker
100.02
100.03
SM15.15
SM15.14 :AND marker
100.04
100.05
SM15.15 :‘OR marker
100.06
100.07
SM15.15
SM15.14
000.09

>0 > — 1 >0 QO > — 1

102

6.5 Circuit conversion

Wiring diagram before

|
100.00

EEIOOOJZ

j 100.01

100,02 \100.03

100.04

Instruction list before

L
A

—

>0 >

100.00
100.01
SM15.14
100.02
SM15.15
100.03
100.04
SM15.15
SM15.14
000.12

Wiring diagram after

]I 100.03 ! 100.02

100.04

::> } 100.00

100.01
00012

Instruction list after

100.03
100.04
100.02
100.00
100.01
000.12

> > QO >»

Examples

Circuit conversion leads to another sequence of instructions. This facilitates
program creation because you can do without some of the markers for part

results.

The length of the program is considerably reduced.

103

Examples

6.6 Special-purpose circuits

6.6.1 Impulse relay
Wiring diagram
1
ooco I L L LI LT L
0
1
00000 | | | | | | .
Instruction list
L 100.00
= PPO0.00
L PP00.00
XO 0O00.00
= 000.00

104

Examples

6.6.2 Reversing circuit (reversing starter) with
forced stop

Wiring diagram

IIOO.O1 TOOO.OO IIOO.OZ l'000.01

00001 000.00
100.00 100.00
00000 00001

Instruction list

L 100.01 :right push-button
O 000.00 :right contactor
AN 000.01 :left contactor
AN 100.00 :Stop push-button*)
= 000.00 :right contactor
L 100.00 left push-button
O 000.01 :left contactor
AN 0O00.00 :right contactor
AN 100.00 :Stop push-button*)
= 000.01 :left contactor
Notes:

We recommend that you provide a contactor inferlock outside the PLC
because switching between outputs is very fast.

*) Type A (AND) at this point if an n.c. Stop button has been connec-
ted outside the controller for safety reasons.

105

Examples

6.6.3 Reversing circuit (reversing starter) without
forced stop

Wiring diagram
! 100.01 ! 000.00 ! [00.02 ! 000.01
100.02 100,01
000.01 000,00
100.00 100.00
000.00 000.01

Instruction list

L 100.01 ; right push-button
©) 000.00 ; right contactor
AN 100.02 ; left push-button
AN 000.01 : left contactor
AN 100.00 ; Stop push-button*)
= 000.00 ; right contactor

L 100.02 ; left push-button

@) 000.01 : left contactor
AN 100.01 ; right push-button
AN O00.00 ; right contactor
AN 100.00 ; Stop push-button*)
= 000.01 : left contactor

Notes: We recommend that you provide a contactor interlock outside the
PLC because switching between outputs is very fast.

*) Type A (AND) at this point if an n.c. Stop button has been connected out-
side the controller for safety reasons.

106

Examples

6.7 Edge evaluation (wiping pulse)

ECO Control 667E has 128 programmable wiping pulses for the detection
of status changes of logical signals (edge evaluation). The pulses can be
used for both rising and falling edges.

6.7.1 Programmable wiping pulse at rising edge

Wiring diagram Circuit symbol Instruction list
| I
, PP00.00
10060 106.00 L 100.00
IW_J‘.IE:IPPOO.OO = PPOO.00
000.00 L PPO0.00
= 000.00

l?l PP00.00 El:l 000.00

Signal curve

oo | T L

1
PP00.00
Q

T = cycle time

107

Examples

6.7.2 Programmable wiping pulse at falling edge

Wiring diagram Circuit symbol Instruction list
| |
10001 \PPODO! 100.01 L 100.01
T1IPP000Y =N PP00.01
00001 L PPOO.OT
= 000.01

?PPOO.(N I:l:l 00001
Signal curve

10001 Lf;

1
PPOO.O1
0

— T |je— —» T |e—

T = cycle time

As opposed to the programmable wiping pulses of the previous examples,
which were activated by a change of edge, the next two examples evalua-

te the signal state. This influences the start-up behaviour.

108

Examples

6.7.3 Wiping pulse at positive signal

Wiring diagram Circuit symbol Instruction list
\poce 10002 L 100.02
MO0.00 AN M00.00
00002 = 000.02
L 100.02
= MO00.00

000.02 |:1:| MOQ.00

Signal curve

100.02 !
0 |

1
00a.02
o

A

109

Examples

6.7.4 Wiping pulse at negative signal

Wiring diagram Circuit symbol Instruction list
10003 LN 100.03
AN M00.01
00002 = 000.03
LN 100.03
= MO00.01

Signal curve

100.03 1 | I
Q S

1
000.03
Q

—»{ T je— —» T |e— —» T je—

110

6.8 Software timers

6.8.1 Mnemonics

Examples

You can program up to 32 software timers in the range between 10 ms and
65535 s. Timer addresses are PT00.00 - PTO1.15.

Start timer

Assignment Address :Time value *Time basis :Function :Remanence *)

:R remanence

‘R raising delay
:F falling delay
:P impulse

:C clock pulse
10 ms (or *100 ms, or *1s

16 bit constant (1 = 65535) or
16 bit variable (e.g. BM01.02 (+BM01.03

Address of software timer (e.g. PTO1.05)

= Start of software timer at edge O ® 1, RESET at log. O

*) Note: Adding the “R” parameter (remanence of current timer

value) is optional.

- Read output L PTxx.xx

- Read current value LD PTxx.xx
(remaining time)

. Stop timer =TH PTxx.xx

“1"= time run out

16 bit value of remaining
time

stop without RESET

111

Examples

6.8.1.1 Syntax examples

Start raising delay of 17.5 s with remanent current value:

= PTO1.00:175*100ms:R:R

Start falling delay with variable timer value (timer value in BM06.02/03):

= PTO1.01:BM04.06* 100ms:F

Read timer value and store in BM06.02/03:
LD PTO1.02

=D BM06.02

Stop timer while 101.00 is on:

L 101.00
=TH PTO1.03

112

Examples

6.8.2 Impulse at start-up

Wiring diagram Circuit symbol Instruction list
| |
0001\ PTOO.O1 0000 L 100.0]
% PTO001 = PT00.01:135*10ms:P
= 000.01
EIZIPTOO.01 I:l:l 000.01
Signal curve
1
000t _]

1
00001]

Y

T = set time (here: 1.35s)

113

Examples

6.8.3 Impulse of constant duration

Wiring diagram Circuit symbol Instruction list

[V |

\ 100,02\ PTO102 \PTO1.02 %00.02 L [00.02

PTOL02 O PTOT1.02

00002 = PT01.02:123*100ms:P
L PT01.02
= 000.02
El:l PT00.02 Elj 000.02
Signal curve
1
10002 .]
00002
O et
—» T e —» T je—

T = set time (here: 12.3s)

114

Examples

6.8.4 Raising delay

Circuit symbol Instruction list
10003 L 100.03
PT00.03 = PT00.03:185*10ms:R
00003 L PT00.03
= 000.03
Signal curve
1
100.03 o _|
1
00003 . _| -
— T |e— — T |je—

T = set time (here: 1.85s)

115

Examples

6.8.5 Falling delay

Circuit symbol Instruction list
10004 L 100.04
PT00.04 = PT01.04:35*100ms:F
00004 L PTO1.04
' - 000.04
Signal curve

100.04 Lf []

1
000.04 o I

—| T | — T e

T = set time (here: 3.55s)

116

Examples

6.8.6 Pulse generator with wiping pulse output

o L 100.05
FT00.05 AN 000.05
00005 = PTO0.00:55*10ms:R
| L PT00.05
= 000.05
Signal curve

F

1
100.056 o |

T2 -T2 .

00005
V]

ALY L . A UL o

T1 = set time (here: 0.555s)

T2 = cycle time

117

Examples

6.8.7 Flash generator with one timer

Circuit symbol Instruction list
o008 L 100.06
PT00.06 = PTO1.06:50* 10ms:C
00006 L PTO1.06
' - 000.06
Signal curve
1
100.06 o |
]
000.06 0 | ' | | I -
ST TiTiTiT STITITIT >l

T = set time (here: 0.5s), flashing frequency = 1Hz

118

Examples

6.8.8 Flash generator with two timers

0000 L 100.00

prooo, AN PT00.02

000.00 = PTO0.01:5*100ms:P
L PT00.01
- 000.00
IN PT00.01

= PT00.02:10* 100ms:P

Signal curve

100.00 1 |
0

1 I
000.06 ; '|

e T2 HeTHje T2 [TH

Y

T1 = set switch-on time (here: 500ms=0.5s)
T2 = set switch-off time (here 1000ms=15s)

119

Examples

6.9 Programmable clock

Apart from the software timers there are also four 8-bit operands available
which are incremented at set clock pulses.

Operand addresses are PC00.00-PC00.03:

Operand | Clock pulse Range
10 ms

PC00.01

PCOO 02 O-..255
10 s

The pulse markers are incremented by 1 in the range from O to 255 at the
specified clock pulse. When the count reaches 255, the next clock cycle sets

the operand back to 0.

Application example
One part of the program is to be processed only every 100 ms.

L PC00.01 ;if 100 ms clock pulse memory is
CMP BM03.14 :the same as the old value?

JP= :go to end of program 1 if yes

= BMO03.14 ;else new = old

2
2

;this part of the program is processed
;only every 100 ms

2
2
2
2
2

LN 001.03 :program for 100 ms flash generator
001.03

2
2
2
2

L PCxx.xx

changes the bit marker’s logical state every (128*clock pulse time) becau-
se the status of bit 7 in the accumulator is used for bit processing.

120

Examples

6.10 Software counters

6.10.1 Mnemonics

You can program up to 32 software counters in the range from 1 to 65535.
Counter addresses are C00.00-CO1.15.

Assignment |Address |:Counter val/:Function [Remanence *)

:R remanence

:F countup

‘B countdown

16 bit constant (1 = 65535) or
16 bit variable (e.g. BM01.02 (+BM01.03))

Address of software counter (e.g. C00.05)

= Starts the software counter at edge O ® 1, RESET at log. O

*) Note: Adding the “R” parameter (remanence of current counter
value) is optional.

->Read output L Cxx.xx “1"= count complete
> Read current value LD Cxx.xx 16 bit value of the cur-
(remaining value) rent count

- Count (transfer pulse) | stop without RESET

121

Examples

6.10.1.1 Syntax examples

Start forward counter to 175 with remanent current value:
= C00.00:175:F:R

Start down-counter with non-remanent, variable counter value (the set value
is stored in BM04.06/ BM04.07)

= C00.03:BM04.06:B

Transfer counting pulse (count)
L 102.03 ;pulse
=C C00.03

Read counter output (set count complete?)
L C01.00

Read count:
LD C01.00

6.10.2 Up-counter to 12

L 100.00 ;start counter

= C00.00:12:v

L [00.01 :counter (transfer pulse)
=C C00.00

L C00.00 :read “count complete”
= 000.12

LD C00.00 :read current value

=D BM0O0.00

122

Examples

6.11 Programming a sequential process

Path-step diagram

1

6

100.02 (al)
10001 (20)

100.04 (b7
100.03 (bO0)

10006 (c1)

100.05 (c0)

A+

B+

o>

Cyl. A 00000

Cy. B 00001

Cyl. C 000.02

123

Examples

Logic diagram

Start 100.00
a0 100.01

. b0100.03
c0 100.05

1

SM00.01 |

92}

| ©00.00

| CYLA+

al 100.02

2

SM00.02 |

92}

| ©00.01

| CYLB+

b1100.04

3

MQ0.03

000.00

CYL.A-

PO

000.02

CYLC+

a010001
c0 100.06

4

MQ0.04

000.00

CYLA+

A %2}

000.01

CYL.B-

al100.02
b0 100.03

5

M0Q0.05

000.00

CYL.A-

7 o

000.02

CYL.C-

o} END

124

LOP>>>>T
Z

NP>
z

DANPPP— AODNBBP— NI NOD> P>
Z Z Z

AT AODY D

Program
100.00 ;start
100.01 :limit switch a0
100.03 :limit switch bO
100.05 :limit switch cO
SM00.01 :step 1
SM00.01 ;step 1
000.00 ;cylinder A+
100.02 limit switch al
SM00.01 ;step 1
SM00.02 ;step 2
SM00.02 :step 2
000.01 :cylinder A+
100.04 limit switch b1
SM00.02 :step 2
SM00.03 :step 3
SM00.03 ;step 3
000.00 :cylinder A-
000.02 :cylinder C+
100.01 :limit switch a0
100.06 limit switch c1
SM00.03 :step 3
SM00.04 :step 4
SM00.04 :step 4
000.00 ;cylinder A+
000.01 :cylinder B-
100.02
100.03 limit switch bO
SM00.04
SM00.05 :step 5
SM00.05 ;step 5
000.00 ;cylinder A-
000.02 :cylinder C-
100.01 ;limit switch a0
100.05 :limit switch cO
SM00.05 ;step 5
SM00.01 ;step 1
SM00.02 ;step 2
SM00.03 :step 3
SM00.04 ;step 4
SM00.05 ;step 5

6.12 Register circuits

6.12.1 1-bit shift register

Examples

In this example, the shift register is 6 steps long. The signal input is shifted
from O00.01 to O00.06 when the shift clock pulse is comes in from 100.00.

100.01 | SI

Circuit svmbol

100.00|PC SO.1|000.01 Sl: sianal input

1 bit shift

reqister

Instruction list
L 100.00

PP00.00
PP00.00
NORM
000.05
000.06
000.04
000.05
000.03
000.04
000.02
000.03
000.01
000.02

100.01
000.01

l_%l_
@)
Z

| I L | AL e | i |

NORM

SO.21000.02 PC:

SO.1: sianal outout 1

'SO.n|000.06 SO.2: sianal outout 2

SO.n: sianal output n

:shift clock pulse
;wiping pulse
;wiping pulse
:go to normal programif no
;step 5

;step 6

:step 4

;step 5

;step 3

:step 4

;step 2

;step 3

;step 1

;step 2

:signal input
;step 1

;normol program

100.01
100.00
000.01
000.02

000.06

125

Examples

6.12.2 8-bit shift register

In this example, the shift register is é steps long. The set information is shifted
from BM00.00 to BM00.06 when the shift clock pulse comes in from
100.00.

Circuit svmbol

BMO0O0.00 | SI
[00.00| PC SO.1|BMO00.01 SI: sianal input BMOO0.01
SO.2 1 BM00.02 PC: 100.00
: : SO.1: sianal output 1 BM00.01
SO.n| BM00.06 SO.2: sianal ouput 2 BMO00.02
8 bit shift SO.n: sianal outout n BM00.06
reqister

Instruction list

L 100.00 ;shift clock pulse
PPO0.00 ;wiping pulse
PPO0.00 ;wiping pulse
NORM :go to normal program if not
BMOO0.05 ;step 5
BMO00.06 ;step 6
BM00.04 ;step 4
BMOO0.05 ;step 5
BMO00.03 ;step 3
BM00.04 ;step 4
BMO00.02 ;step 2
BMO00.03 ;step 3
BMOO.01 ;step 1
BMO00.02 ;step 2

[00.01 :signal input
BMOO0.01 ;step 1

I_%I_
@)
Z

nm=n =—nr=—un =1

NORM

;normc1| program

126

Examples

6.13 Copy commands (bit-to-byte transfer)

6.13.1 Copy eight 1-bit operands to one byte

C1T8 100.00 load contents of 100.00-100.07 into the accumulator
= BMO00.00 copy contents of accumulator to BM00.00

7 6543210

,—_»IIIIIIIII

100.00 accumulator
100.01
100.02
100.03 HEREEERN
[00.04 BM0O0.00
100.05
100.06
100.07

6.13.2 Copy one byte to eight 1-bit operands

L BMO0O0.01 ;load contents of BMOO.01 into accumulator
C8T1 000.03 ;copy contents of accumulator to ©00.03-O00.10

6.13.3 Copy sixteen 1-bit operands to two bytes

CI1T16 101.00 ;load contents of 101.00101.15 into accumulator

=D BM00.02 ;copy contents of accumulator to BM00.02-BM00.03
;(101.004101.07 to BM00.02,
;101.08-01.15 to BM00.03)

127

Examples

6.13.4 Copy two byte to sixteen 1-bit operands

LD BMO00.04 ;load contents of BM00.04-BM00.05 into accumulator
C16T1 0O00.00 ;copy contents of accu to addresses O00.00-000.15
;(BM00.04 to ©O00.00-000.07,
; BM0O0.05 to ©00.08-000.15)

6.14 Comparator circuits

6.14.1 8-bit comparator

The program in this example compares the contents of two 8-bit markers. The
result (greater, smaller, or equal) is evaluated by conditional jumps (see jump
operations). In this case, O00.00 is set if reference value 1 is greater than
reference value 2.

V1: reference value 1 BM00.00
V2: reference value 2 BM0O0.01
CO: comparator output O00.00

RMOO OO V1
BMO0O0.01 V2 CO|000.0 VI1>V2
comparator
Program
L BMOO.00 ;compare V1
\ BM0O0.01 ;with V2
JP> MARKI1 :jump if V1 greater than V2
L PLO0.00 loa. O
JP MARK?2 ;jump to CO
MARK1 L PLO0.01 :logical 1
MARK?2 = 000.00 ;CO

128

6.14.2 16-bit comparator

The program in this example compares the contents of two 16-bit markers.
The result (greater, smaller, or equal) is evaluated by conditional jumps (see
jump operations). In this case, O00.00 is set if reference value 1 is greater

than reference value 2.

Examples

HB LB
V1: reference value 1 BM00.01 BMO0O0.00 HB: high byte
V2: reference value 2 BM00.03 BMO00.02 LB: low byte
CO: comparator output O00.00
HB LB
Vi
BM00.03 BMO00.02 |V2 CO1000.0
8 bit
comparator
Program
LD BMOO.00 ;compare V1
CMPD BMO00.02 ;with V2
JP< MARK3 ;jump if V1 smaller than V2
L PLO0.00 log. O
JP MARK4 ito CO
MARK3 L PLO0.01 :logical 1
MARK4 = 000.00 ;CO

129

Examples

6.15 Arithmetic functions

6.15.1 Binary 8-bit adder

Z1: 1staddend 8 bit 0-255 ($FF) BM00.00
Z2: 2nd addend 8 bit 0-255 ($FF) BMO00.01

Z3: sum 8 bit 0-255 ($FF) BM00.02
71
BMO00.01 | Z2 Z3| BM00.02
Binarv
8-bit
adder
Program

L BMO00.00 :Z1 1" addend
ADD BMO00.01 :Z2 2™ addend
= BM00.02 ;Z3 sum

130

Examples

6.15.2 Binary 16-bit adder

HB LB
Z1: lstaddend 16 bit 065535 ($FFFF) BMO00.01+ BMO00.00
Z2: 2nd addend 16 bit 0-65535 ($FFFF) BMO00.03+ BMO00.02

Z3: sum 16 bit 0-65535 ($FFFF) BM00.05+ BM00.04
HB: hiah byte
HB LB LB:
+ 71
HB LB
BM00.03 + BMO00.02 1272 Z3 |BM00.05 + BMO00.04
Binary
16-bit
adder
Proagram

LD BM00.00 ;Z1 1" addend
ADDD BMO00.02 ;72 2™ addend
=D BM00.04 ;Z3 sum

131

Examples

6.15.3 8-bit BCD adder

Z1: 1staddend 8 bit 0-99 BM00.00
Z2: 2nd addend 8 bit 0-99 BM00.01
Z3: sum 8 bit 099 BM00.02
RMOO OO [71
BM0O0.01 | Z2 Z3 | BM00.02

8 bit

BCD

adder
Programm

kkkk BCD COI'I'eCﬁOH Rk kb ok S S kO R Rk kb o

CIR LBM0O0.01 ;marker for BCD correction

L BM00.00 ;Z1 1st addend

A 15

= LBM00.00 ;1* decade

L BM00.01 ;Z2 2nd addend

A 15 :davon 1. Dekade

ADD LBM0O0.00

CMP 10 :BCD correction required?
JP< ADDIT ;jump if not

L 6 ;if so:

= LBM0O0.01 :load correction

*kkk k% T hkkhkkhkhkhkhkhkkhkkhkhdhkdhhkhkhkhkkhkkhkdhkdhhhhhkkhkkhddkdxdx*x
Addition

ADDIT L LBMOO0.01
ADD BM00.00 ;Z1 1st addend
ADD BM00.01 ;Z2 2nd addend
= BM00.02 ;Z3 sum

132

6.15.4 Binary 8-bit subtractor

Examples

Caution: Z3 becomes negative and is filed as two's complement if Z2 > Z1.

Further evaluation of Z3 has to take this into account.

Z1: minuvend
Z2: subtrahend
Z3: difference

BM00.01

Proaramm

8 bit 0-255 ($FF) BM00.00
8 bit 0-255 ($FF) BMO00.01
8 bit 0-255 ($FF) BM00.02

71

72 Z3 |1 BM00.02

Binary

subtractor

L BM00.00 ;Z1 minuend
SUB BMO00.02 ;Z2 Ssbtrahend

BM00.04 ;Z3 difference

133

Examples

6.15.5 Binary 16-bit subtractor

HB LB
Z1: minvend 16 bit 0-65535 ($FFFF) BMO00.01+ BM00.00
Z2: subtrahend 16 bit 0-65535 ($FFFF) BM00.03+ BMO00.02
Z3: difference 16 bit 0-65535 ($FFFF) BMO00.05+ BM00.04

HB: hiah byte
HB LB LB:
+ 71
HB LB
BM00.03 + BMO00.02 |72 Z3 |BM00.05 + BMO00.04
Binary
subtractor

Proagram
LD BM00.00 ;Z1 minuend
SUBD BMO00.02 ;Z2 subtrahend
=D BM00.04 ;Z3 difference

134

6.15.6 8-bit BCD subtractor

Z1: minuend 8 bit 0-99 BM00.00
7Z2: subtrahend 8 bit 0-99 BM00.01
Z3: difference 8 bit 099 BM00.02
RMOO OO [71
BM0O0.01 | Z2 Z3 | BM00.02

8 bit

BCD

subtractor
Programm

kkkk BCD COI'I'eCﬁOH Rk kb ok S S kO R Rk kb o

BM00.00 ;Z1 minuend

15

LBM00.00 ;1* decade

BM00.01 ;Z2 subtrahend

15 ;1" decade

CMP LBM0O0.00 BCD correction required?
JP<= SUBTR ;jump if not

>0 >

L BM00.01 ;if so:
ADD 6 :load correction value
= BMO0O0.01

*kkk k% - khkhkhkhkkhkkhkhkhkdhkhkhkhkhkhkhkdhkdhkdhhkhkhkhhdhdhdkdx*x*x
Subtraction

SUBTR L BM00.00 ;Z1 minuend
SUB BM00.01 ;Z1 subtrahend
= BM00.02 ;Z3 difference

Examples

135

Examples

6.15.7 Binary 8-bit multiplicator
Z1: multiplicand 8 bit

Z2: multiplicator

Z3: product

RMOO 00

BM00.01

Program

136

8 bit

16 bit

71

72

Binary

73

8/16-bit

multiol

icator

L
MUL
=D

BM00.00
BMO00.01
BMO00.02

0-255 ($FF) BM00.00
0-255 ($FF) BMO00.01
HB LB

0-65025 ($FIO1) BMO0.03+ BM00.02

HB: high byte
LB: low byte

HB LB
BM00.03 +BM00.02

:Z1 multiplicand
:Z2 multiplicator
:Z3 product

Examples

6.15.8 Binary 16-bit multiplicator

Z1: multiplicand 16 bit
Z2: multiplicator 16 bit

0-65535 ($FFFF)
0-65535 ($FFFF)

HB LB

BM00.01+ BMO00.00
BM00.03+ BMO00.02
BM00.05+ BMO00.04

HB: hiah byte
LB:
HB LB

BM00.05 + BMO00.04

Z3: product 16 bit 0-65535 ($FFFF)
HB LB
+ 71
BM00.03 + BMO00.02 |72 73
Binary
multiplicator
Proagram
LD BMO00.00 ;Z1 multiplicand
MULD BMO00.02 ;Z2 multiplicator
=D BM00.04 ;Z3 product

137

Examples

6.15.9 Binary 8-bit divider

Z1: dividend 8 bit BM00.00
Z2: divisor 8 bit BM0O0.01
Z3: quotient 8 bit BMO00.02
RMOO OO [71
BMO00.01 | Z2 Z3 | BM00.02

Binary

divider
Programm

L BM00.00 ;Z1 dividend
DIV BMO00.0T ;Z2 divisor
= BM00.02 ;Z3 quotient

138

Examples

6.15.10 Binary 16-bit divider

HB LB
Z1: dividend 16 bit 0-65535 ($FFFF) BMO00.01+ BM00.00
Z2: divisor 16 bit 065535 ($FFFF) BM00.03+ BM00.02

Z3: quotient 16 bit 0-65535 ($FFFF) BMO00.05+ BM00.04

HB: hiah byte
HB LB LB:
+ 71
HB LB
BM00.03 + BMO00.02 |72 Z3 |BM00.05 + BMO00.04
Binary
divider

Programm
LD BM00.00 ;Z1 dividend
DIVD BMO00.02 ;Z2 divisor

=D BM00.04 ;Z3 quotient
The resulting quotient is an integer number. Proceed as follows to find the rest:

LD BM00.04 ;Z3 quotient
MULD BMO00.02 ;72 divisor

=D LBMOO.00 ;Z3(integer!) *Z2
LD BM00.00 ;Z1 dividend
SUBD LBMO00.00

=D BMOO0.06 ;rest

139

Examples

6.16 Code converters

6.16.1 BCD-to-binary converter, 8-bit

BCD: 8bit 099 BM00.00
Binary: 8-bit 099($63) BMO00.01

RMOO OO | RCD Rin RMOO 01
8 bit
BCD-to-binarv
converter

Program
L BM00.00 ;load BCD value
LSR :shift
LSR ;tens
LSR ;to
LSR ;ones
MUL 10 :multiply

= BMO0O0.01 ;store

L BM00.00 ;load BCD value
A 15 ;extract tens

ADD BMO00.01 ;add binary tens
= BMO00.01 ;store binary value

140

Examples

6.16.2 Binary-to-BCD converter, 8-bit
Binary: 8-bit 0-99($63) BMO00.00

BCD: 8-bit 0-99 BMO00.01
Rin RCD
binary-to-BCD
converter

Program
L BM0O0.00 ;load binary value
DIV 10 :find and
= LBM00.00 ;store tens
MUL 10 ;calculate and register
= LBMOO.01 ;integer amount of tens
L BM00.00 ;
SUB LBM00.01 ;find and
= LBMOO.01 ;store tens
L LBMO00.00 ;shift
LSL ;tens
LSL ;info the upper
LSL :nibble
LSL ;
@) LBM00.01 ;compress and
= BMO0O.01 ;output BCD value

141

Examples

6.16.3 BCD-to binary converter, 16 bit

HB LB
BCD: 16 bit 09999 BM00.01+ BMO00.00
Binary: 16 bit 0-9999($270F) BM00.03+ BM00.02

HB:
[B: low byte

HB LB HB LB
+ Bin BCD +

BCD-to-binary

converter

142

Program

BM00.03
LBM00.03
BM00.00
15
BM00.02
BM00.00

10
BM00.02
BM00.02
BMO00.01
15
LBM00.02
LBM00.02
100
BM00.02
BM00.02
BMO00.01

LBM00.02
LBM00.02
1000
BM00.02
BM00.02

:clear because of LD BM00.02
:clear because of LD LBM00.02
:separate ones decade

:binary ones
:separate fens decade

:binary tens

;ones + tens
:separate hundreds decade
:binary hundreds

;same as word

:ones + tens + hundreds
:separate thousands decade
:binary thousands

:same as word

;complete binary value

Examples

143

Examples

6.16.4 Binary-to-BCD converter, 16 bit

HB LB
Binary: 16 bit 0-9999($270F) BMO00.01+ BMO00.00
BCD: 16 bit 09999 BM00.03+ BMO00.02
HB:
[B: low byte
HB LB HB LB
+ Bin BCD +
binary to-BCD
converter

144

Examples

Program
CIR BMO00.02 ;setto zero
CIR BM00.03 ;”

THOU1 LD BM00.00 :;load binary value
CMPD 1000
JP< THOU2 :smaller than onethousand 2
SUBD 1000 ;if yes: subtract 1000
=D BM00.00
INC BMOO0.03 ;count subtraction steps
JP THOU1 :check again

THOU2 L BM00.03 ;if not: shift thousands
LSL :to the upper
LSL :nibble of the
LSL ;BCD output’s
LSL :high byte

= BM00.03 ;prepare high byte
HUND LD BM00.00 ;remaining binary value (no thousands)

CMPD 100

JP< TENT :smaller than one-hundred?
SUBD 100 ; if yes: subtract 100

=D BMO0O0.00

INC BMO0O0.03 ;count subtraction steps (in lower
:nibble of BCD output's high byte)
JP HUND :check again

TEN1 L BM00.00 ;rem. binary value (no hundreds either)
Vv 10
JP< TEN2 :smaller than ten 2
SUB 10 ;if yes: subtract 10
= BM00.00
INC BMO00.02 ;count subtraction steps
JP TENT :check again
TEN2 L BM0O0.02 ;if not: shift tens
LSL ;into the upper
LSL :nibble of the
LSL ;BCD output’s
LSL :low byte

ADD BMO00.00 ;remaining ones into lower nibble
= BM00.02 ;output low byte

145

Examples

6.17 Modular programming

Task

Sets of 12 pieces each are to be transported on a con-
veyor belt. The belt drive is operated by start and stop
keys. The belt is stopped after every twelfth piece. Before
leaving the belt, each piece triggers an impulse via an in-
itiator. The impulse is used for counting.

A binary display is to show:
> while the belt is moving:
the current number in the set (0...12)

> else:
the sum total of all parts transported already (0...65536)

You should be able to reset the counter via the Clear keys.

6.17.1 Part task definition

The part tasks are to be defined under technological as-
pects and aim for clearly arranged modules that can be
used several times. Our example only indicates an under-
standing of the modules’ interaction.

146

Examples

6.17.1.1 Module structure

ORG ONOFF(1)

IPP ONOFF fg—»L STARTER
S IOMARKER
L STOP
ON READY
o DONE
R IOMARKER
L IOMARKER
= MOTOR
COUNTER(2) SUM(5)

IPP COUNTER[q_ "L C00.00 LD C00.00
0 STOP ADDD BM00.00
= PP00.00 =D BM00.00
L PP00.00
IPCP SUM
L IOMARKER
- C00:12:F NEW(4)

L CIMP

=C C00.00 LD 0

L CLEAR =D BM00.00
IPCP NEW

DISCURIA)

L MOTOR

IPCP DISCUR [g< LD C00.00
=D BMO00.02
|PP DISPLAY DISPLAY(7)
DISSUM(4) D BMO00.00

C14T1 _ RIT1

N MOTOR —{ LD BMO0.00

JPCP DISSUM =D BMO00.02

| lipp DISPLAY

147

Examples

6.17.1.2 Documentation

=—======= KUBES

Synbol table
Project : E556D Network

created : Jul 20 1998 09: 53

User : Virginia Lehnann changed : Jul 20 1998 09: 53
Coment : Exanpl e "Mdul ar programm ng"
Addr ess: Synbol : Comment : Suppl enent :
100. 00 START belt drive on X10/1-1
100. 01 STOP belt drive off X10/ 1-2
100. 02 READY system ready X10/ 2-1
100. 03 a W counting pul se of initiator X10/ 2-2
100. 04 CLEAR clear sum X10/ 2-3
Q00. 00 MOTCR notor protection
000. 01 BI T1 bi nary di spl ay
Q00. 02 Bl T2 bi nary di spl ay
Q00. 03 BI T3 bi nary di spl ay
Q00. 04 Bl T4 bi nary di spl ay
Q00. 05 BI T5 bi nary di spl ay
Q00. 06 Bl T6 bi nary di spl ay
Q00. 07 BI T7 bi nary di spl ay
Q00. 08 BI T8 bi nary di spl ay
Q00. 09 Bl T9 bi nary di spl ay
Q00. 10 Bl T10 bi nary di spl ay
Q00. 11 Bl T11 bi nary di spl ay
Q00. 12 Bl T12 bi nary di spl ay
00. 13 Bl T13 bi nare anzei ge
Q00. 14 Bl T14 bi nary di spl ay
Q00. 15 Bl T15 bi nary di spl ay
Q01. 00 Bl T16 bi nary di spl ay
MDO. 00 | QVARKER ,motor on/of f* narker
BMDO. 00 BMDO_00 | ow byte counting register
BMDO. 01 BMDO_01 hi gh byte counting register
BMDO. 02 BMDO_02 hi gh byte display register
BMDO. 03 BMDO_03 | ow byte display register
Q00. 00 COUNTER up- count er
PP00. 00 DONE set count conplete

148

======== KUBES
Proj ect structure
Project : E556D Network :
created : Jul 20 1998 09: 53

User : Virginia Lehmann changed : Jul 20 1998 09: 53
Comment : Exanpl e “Mdul e programi ng"
ORG ORG 1
Lo >ONOFF. PRO 1
Lo >COUNTER. PRQ' 2
I l* ------ >SUM PRO 5
i l* ------ >NEW PRO/ 6
Lo >Di SCUR PRQ 3
: l* >DI SPLAY. PRQ 7
l* ------ >Dl SSUM PRO 4

Lo >Di SPLAY. PRO 7
======== KUBES

Organi sation nodule |IL

Project : E556D Net wor k
Mdule @ ORG No.: 1 created : Jul 20 1998 09:53
User : Virginia Lehnann changed : Jul 20 1998 10: 27
1: JPP ONOFF 1
2: JPP COUNTER 2
3: L MOTCR Q00.00 ; (notor protection)
4: JPCP DI SCUR 3
5: LN MOTCR Q00.00 ; (notor protection)
6: JPCP DI SSUM 4
7:

Examples

149

Examples

======== KUBES
Program nodule IL
Proj ect E556D Network
Modul e ONCFF No.: 1 created : Jul 20 1998 10: 40
User Virginia Lehmann changed : Jul 20 1998 10: 40
Comment : ONCOFF
1: L START 100.00 ; (belt drive on)
2: S | OVARKER MD0.00 ; (,motor on/off“ marker)
3: L STOP 100.01 ; (belt drive off)
4: ON READY 100.02 ; (systemready)
5: (0] DONE PP00. 00 ; (set count conplete)
6: R | QVARKER MDO. 00 ; (,nmotor on/off“ narker)
7: L | OVARKER MD0. 00 ; (,motor on/off“ marker)
8: = MOTCR Q00.00 ; (notor protection)
9:
=—======= KUBES
Program nodule |IL
Proj ect E556D Network
Modul e COUNTER No.: 2 created : Jul 20 1998 10: 42
User Virginia Lehnann changed : Jul 20 1998 10: 42
Comment : COUNTER
1: L COUNTER Q00. 00 ; (up-counter)
2: (0] STCOP 100.01 ; (belt drive off)
3: = DONE PP00. 00 ; (set count conplete)
4: L DONE PP00. 00 ; (set count conplete)
5: JPCP SUM 5
6: L | QVARKER MDO. 00 ; (,motor on/off“ narker)
7: = COUNTER 12: F Q00. 00 ; (up-counter)
8: L a wP 100.03 ; (counting pulse of initiator)
9: = COUNTER C00. 00 ; (up-counter)
10: L CLEAR 100.04 ; (clear sum
11: JPCP NEW 6
12:
======== KUBES
Program nodule IL
Proj ect E556D Network
Modul e DI SCUR No.: 3 created : Jul 20 1998 10: 45
User Virginia Lehmann changed : Jul 20 1998 10: 45
Comment : DI SCUR
1: LD COUNTER Q00. 00 ; (up-counter)
2: =D BMDO_02 BMDO. 02 ; (high byte display register)
3: JPP DI SPLAY 7
4:

150

Examples

=====—=== KUBES
Program nmodule |IL
Proj ect E556D Network :
Modul e DI SSUM No.: 4 created : Jul 20 1998 10: 48
User Virginia Lehmann changed : Jul 20 1998 10: 48
Conment : DI SSUM
1: LD BMDO_00 BMDO. 00 ; (low byte counting register)
2: =D BMDO_02 BMD0. 02 ; (high byte display register)
3: JPP DI SPLAY 7
4.
=—======= KUBES
Program nmodule IL
Proj ect E556D Network
Modul e SuMm No.: 5 created : Jul 20 1998 10: 49
User Virginia Lehnann changed : Jul 20 1998 10: 49
Comment : SUM
1 LD COUNTER Q00. 00 ; (up-counter)
2 ADD BMDO_00 BMDO. 00 ; (low byte counting register)
3 = BMDO_00 BMDO. 00 ; (low byte counting register)
======== KUBES
Program nodule IL
Proj ect E556D Network
Modul e NEW No.: 6 created : Jul 20 1998 10:50
User Vi rginia Lehmann changed : Jul 20 1998 10: 50
Comment : NEW
1: LD 0
2: = BMDO_00 BMDO. 00 ; (low byte counting register)
3:
======== KUBES
Program nodule IL
Proj ect E556D Network
Modul e DI SPLAY No.: 7 created : Jul 20 1998 10:50
User Virginia Lehmann changed : Jul 20 1998 10: 50
Comment : DI SPLAY
1: LD BMDO_00 BMDO. 00 ; (low byte counting register)
2: C16T1 Bl T1 000.01 ; (binary display)
3:

151

Examples

152

Troubleshooting

7 Troubleshooting

7.1 “Failure” LED flashing?
- Short circuit

>

>

Indication:
“failure” LED: flashing red light
Cause:

Short circuit or overload at an output.

Reaction:
All outputs are disabled.

Corrective action:

- Find short circuit (e.g. by disconnecting all outputs
and reconnecting them one by one).

— Remove short circuit

— Restart PLC

7.2 LEDs ,run/stop” and ,failure” light up red
- Undervoltage

>

Indication:
.run/stop” LED: permanent red light
Jfailure” LED: permanent red light

Cause

The system supply voltage falls below a threshold so-
mewhere between 16 and19 V.

Reaction:

The user program stops, all non-remanent operands
and outputs =0.

Corrective action:
- Switch supply voltage off and back on again.

153

Troubleshooting

7.3 No online connection to KUBES?

The following error message may be displayed when you
are trying fo go online with the PLC (via V.24):

» System error Pos: 14

& 3023 Online - synchronization error

Fig. 14: V.24-synchronisation error message

If it does, please check whether:
> the PLC is switched on,
> the programming cable is connected to the PLC,

> the programming cable is properly connected to the
PC (check port! the standard port is COMT1),

> the cable is a genuine KUBES programming cable
(part no.: 657.151.03).

If all of the above points are okay, but the PLC still does not
react, it could be that the PLC no longer accesses the port.

> Switch the supply voltage off and back on again.

In some cases, the PLC still does not react. The following
causes are possible:

» PLC defective

» program error (CPU no longer accepts KUBES' online
message)

> wrong V.24 parameter settings

154

Troubleshooting

Ultimate chance of correcting the fault

>

>

YV V V V V V

Switch off all supply voltages, i.e. both the system
supply and the supply of the outputs (> 3.4).

Take off the lid of the housing

The lid snaps info the device's side walls. Carefully
push out one side wall to unlock the lid so that you
can take it off.

Pull off the jumper located above the V.24 interface
connector.

Switch on the system supply.
=> the PLC indicates “stop” (> 3.8). (Repeat the
procedure if not.).

Choose “Online V.24" in KUBES.

Hand in the PLC for repairs if there’s still no online
connection.

Choose “Delete program”.

Transmit a new and unbugged program.
Switch the power supply off.

Put the jumper back in.

Close the lid.

Switch all supply voltages back on.

155

Troubleshooting

156

8 Data summary

8.1 Technical data

8.1.1 Design

Type
Dimensions (L x W x H)
Eco Control 667E 8/8
Eco Control 667E 16/16
Eco Control 667E 32/32
Installation
Weight
Eco Control 667E 8/8
Eco Control 667E 16/16
Eco Control 667E 32/32
Admissible ambient conditions

Storage temperature

Ambient temp. during operation

Relative humidity

8.1.2 System power supply

Voltage
Power consumption
Connectors

L1+

L1-

Data summary

open
depend on model variant
152 x 90 x 73 mm

152 x 90 x 73 mm

268 x 90 x 73 mm

on carrier rail

depends on model variant
c.570¢g

c. 580¢g
c.970g

-25..470 °C
0...55°C
50...95%

24V DC -20% / +25%

100 mA

clamp-screw term. up to 2.5mm?
+24VDC

oV

157

Appendix

8.1.3 System status indicators

Type light emitting diodes, class 1
(in acc. with EN 60825-1)
Run/stop (duo-LED, green/red) program running/stopped
Failure (LED, red) failure indicator

8.1.4 Serial interface

Type V.24 (RS 232)

Connector female, 9-pin D-Sub

Function programming and
data communication

Maximum baud rate 9.6 kbit/s

Transfer format 8 data bits, 1 start bit,
1 stop bit

8.1.5 Programming

Programming device PC with MS°Windows
Programming software KUBES (version 5.30 or higher)
Programming cable 657.151.03

158

Data summary

8.1.6 Digital inputs

Provided via internal process image
Amount depends on model variant
Eco Control 667E 8/8 8
Eco Control 667E 16/16 16
Eco Control 667E 32/32 32
Type (in acc. with [EC 1131) 1
Galvanic separation none
Indicators light emitting diodes, class 1 (in
acc. with EN 60825-1)
Colour green
Tapping point in input circuit
Signal state 1: LED on
2: LED off
Addressing depends on model variant
Eco Control 667E 8/8 100.00...07
Eco Control 667E 16/16 100.00...15
Eco Control 667E 16/16 100.00...15,101.00...15
Input voltage 24V DC -20%/+25%
(inc. residual ripple)
Surge immunity £ 40V DC (£ 30 min)
Signal detection
Logical O £5VDC
Logical 1 3 15V DC
Power consumption/input max. 10 mA

159

Appendix

8.1.7 Digital outputs

Control

Amount
Eco Control 667E 8/8
Eco Control 667E 16/16
Eco Control 667E 32/32

Type

Indicators

Colour
Tapping point

Signal state

Addressing
Eco Control 667E 8/8
Eco Control 667E 16/16
Eco Control 667E 32/32
Output supply
Connectors
L1+
L1-
Output current/output

Shortcircuit protection

160

via internal process image
depends on model variant
8

16

32

semiconductor

light emitting diodes, class 1 (in
acc. with EN 60825-1)

red
in the load circuit

1: LED on
2: LED off

depends on model variant
000.00...07

000.00...15

000.00...15, ©01.00...15
24V DC -20%/+25%
clamp-screw term. up to 2.5mm?
+ 24V DC

oV

max. 0.5 A

yes

Data summary

8.1.8 Processor and memory

Microprocessor
Memory
Operating system
User program
Data, remanent

Data, non-remanent

8.1.9 Operands

Programmable timers
Amount/range
Programmable counters
Amount/range
Inputs and outputs

Bit markers

Byte markers

80C535

Flash-EPROM
NV-RAM, 32 kbyte
NV-RAM, 8 kbyte
SRAM, 24 kbyte

remanent if required
32/10 ms ... 65535 s
remanent if required
32/0...65535

> 8.1.4und O

1320, inc. 512 remanent
2816, inc. 2304 remanent

161

Appendix

8.2 Order specifications

8.2.1 Controllers

Product
Eco Control 667E 8/8

8 digital inputs, 8 digital outputs
Eco Control 667E 16/16

16 digital inputs, 16 digital outputs
Eco Control 667E 32/32

32 digital inputs, 32 digital outputs

8.2.2 Accessories

Product
Simulator plug for 8 digital inputs
Starter kit Eco Control 667E, German, containing:

KUBES light (programming software just for Eco
Control 667), programming cable 657.151.03,
instruction manuals E 327 D and E 556 D.

> Available as from week 44/98
Starter kit Eco Control 667E, English, containing:

KUBES light (programming software just for Eco
Control 667), programming cable 657.151.03,
instruction manuals E 327 GB and E 556 GB.

> Available as from week 51/98

162

Part number

upon request

667.752.00

667.704.00

Part number
667.155.50
667.502.00

667.502.11

9 Index

addressing 49

AND 91

AND marker 101
arithmetic functions 130

arithmetical operation commands
55

cable routing and wiring 19
code converters 140
coml 30
commands

description 47

summary 50
communication modules 73
comparison commands 56
copy commands 60, 127
data 33

read 85

summary 157

write 86
data (blocks)

copy 83
design 24
digital inputs 28
digital outputs 29
dirt 20
earthing 26
Eco Control 667E 16/16 23

Index

Eco Control 667E 32/32 24
Eco Control 667E 8/8 22
electromagnetic compatibility 17
electromagnetic interference 20
examples 91
exclusive OR 94
falling delay 116
Hardware 21
impact and vibration 20
impulse relay 104
incrementation commands 56
inductive actuators 20
installation 15, 25

notes 18
interference emission 18
intermediate code addresses 84
jump commands 58
KUBES module 66
KUBES module libraries 70
KUBES modules 69
location of installation 19
logical operation commands 51
maintenance 16
memory distribution 31
memory function

mainly resetting 96

mainly setting 96

163

Appendix

model variants 21
modular programming 146
module hierarchy 67
modules
programming 65
NAND 93
negation
at input 92
at output 92
NOR 93
notes 14
NVRAM 33
On-chip RAM 31
operand ranges 43
operands
set functions 46
summary 45
types 48
operating system 31
operative approach 35
OR 91
OR marker 100
order specifications 162
organisation module 66
overload 29
PLC cycle 36
power supply 27, 29
outputs 29
system 27

164

process image 28, 37
processor 31

program module 66
programmable clock 120

programmable counter commands

62

programmable pulse commands

62

programmable timer commands

62
project planning 15
raising delay 115
RD_OFFS 85
receive single character 77
Reliability 13
resistance to interference 17
retrievability 32
safety 15
seal-in circuit 95
send single character 76
send strings 78
sequential process 123
servicing 16
shift commands 56
shift register 125
short circuit 29, 153
Software 35
software counters 121
SST667IN 78
target group 13

technical data 157
temperature 19
troubleshooting 153
undervoltage 153

user program 31

Index

V246671E 77
V246671S 76

wiping pulse 107
WR_OFFS 86

165

Appendix

10

166

	Table of contents
	1 Introduction
	1.1 Features
	1.2 Successor to Pico/Compact Control KUAX 667
	2 Reliability, safety
	2.1 Target group
	2.2 Reliability
	2.3 Notes
	2.3.1 Danger
	2.3.2 Dangers caused by high contact voltage
	2.3.3 Important information / cross reference
	2.4 Safety
	2.4.1 Observe during planning and installation
	2.4.2 Observe during maintenance or servicing
	2.5 Electromagnetic compatibility
	2.5.1 Definition
	2.5.2 Resistance to interference
	2.5.3 Interference emission
	2.5.4 General notes on installation
	2.5.5 Protection against external electrical
	2.5.6 Cable routing and wiring
	2.5.7 Location of installation
	2.5.8 Particular sources of interference
	3 Hardware
	3.1 Model variants
	3.2 Top view
	3.2.1 Eco Control 667E 8/8
	3.2.2 Eco Control 667E 16/16
	3.2.3 Eco Control 667E 32/32
	3.3 Mechanical design
	3.3.1 Installation
	3.3.2 Earthing
	3.4 Power supply
	3.4.1 System power supply
	3.5 Digital inputs
	3.6 Digital outputs
	3.7 Serial interface COM1
	3.8 Light emitting diodes
	3.9 Processor
	3.9.1 On-chip RAM
	3.10 Memory distribution
	3.10.1 Operating system
	3.10.2 User program
	3.10.2.1 Disable retrievability = increase capacity
	3.10.3 Data memory
	3.10.4 NV-RAM: special features
	3.10.5 On-chip RAM: special features
	4 Software
	4.1 Operative approach
	4.1.1 PLC cycle
	4.1.1.1 The 4 phases of a PLC cycle
	4.1.1.2 Minimum cycle time
	4.1.1.3 Influence of timer interrupts on the cycle time
	4.1.1.3.1 Extension of the cyle time
	4.1.1.4 Influence of communication on the cycle time
	4.1.1.5 Changing the program in run mode, transmitting
	4.1.1.6 Restarting the controller after changes in Stop/
	4.1.1.7 Programming
	4.2 Operand ranges
	4.2.1 Definitions
	4.2.2 Summary of operands
	4.2.3 Set operand functions
	4.2.3.1 Operands reserved for monitor functions
	4.2.3.2 Operands reserved for KUBES modules
	4.3 Description of commands
	4.4 Types of operands
	4.4.1 Addressing
	4.4.2 Summary of commands
	4.4.2.1 Logical operation commands
	4.4.2.2 Assignments and store commands
	4.4.2.3 Arithmetical operation commands
	4.4.2.4 Comparison,- shift- and incrementation commands
	4.4.2.5 Jump commands
	4.4.2.6 Copy commands
	4.4.2.7 Programmable pulses , timers and counters
	4.5 Programming modules
	4.5.1 Organisation module
	4.5.2 Program module
	4.5.3 KUBES module
	4.5.4 Module hierarchy
	5 KUBES modules
	5.1 KUBES module libraries
	5.1.1 Contents of the KUBES module library
	5.1.2 Loading KUBES modules
	5.2 Communication modules
	5.2.1 Reserved operands
	5.2.2 V.24 mode settings
	5.2.3 Sending single characters (V24667IS)
	5.2.3.1 Program structure
	5.2.4 Receiving single characters (V24667IE)
	5.2.4.1 Program structure
	5.2.5 Sending strings (SST667IN)
	5.2.5.1 Program structure
	5.2.6 Example program “serial communication“
	5.3 Copying data (blocks)
	5.3.1 Reserved operands
	5.3.2 Operands’ intermediate code addresses
	5.3.3 Reading data (RD_OFFS)
	5.3.3.1 Program structure
	5.3.4 Writing data (WR_OFFS)
	5.3.4.1 Program structure
	5.3.5 Example program “copy data block“
	6 Examples
	6.1 Basic functions
	6.1.1 AND
	6.1.2 OR
	6.1.3 Negated input
	6.1.4 Negated output
	6.1.5 NAND
	6.1.6 NOR
	6.1.7 XO: exclusive OR (antivalence)
	6.1.8 XON: exclusive NOR (equivalence)
	6.1.9 Seal-in circuit
	6.2 Memory functions
	6.2.1 Mainly resetting
	6.2.2 Mainly setting
	6.3 Switching circuits
	6.3.1 OR-AND circuit
	6.3.2 Parallel circuit to output
	6.3.3 Network with one output
	6.3.4 Network with outputs and markers
	6.4 Special markers used as AND/OR marker
	6.4.1 Network with OR marker
	6.4.2 Network with AND marker
	6.4.3 Network with multiple use of the OR marker
	6.5 Circuit conversion
	6.6 Special-purpose circuits
	6.6.1 Impulse relay
	6.6.2 Reversing circuit (reversing starter) with
	6.6.3 Reversing circuit (reversing starter) without
	6.7 Edge evaluation (wiping pulse)
	6.7.1 Programmable wiping pulse at rising edge
	6.7.2 Programmable wiping pulse at falling edge
	6.7.3 Wiping pulse at positive signal
	6.7.4 Wiping pulse at negative signal
	6.8 Software timers
	6.8.1 Mnemonics
	6.8.1.1 Syntax examples
	6.8.2 Impulse at start-up
	6.8.3 Impulse of constant duration
	6.8.4 Raising delay
	6.8.5 Falling delay
	6.8.6 Pulse generator with wiping pulse output
	6.8.7 Flash generator with one timer
	6.8.8 Flash generator with two timers
	6.9 Programmable clock
	6.10 Software counters
	6.10.1 Mnemonics
	6.10.1.1 Syntax examples
	6.10.2 Up-counter to 12
	6.11 Programming a sequential process
	6.12 Register circuits
	6.12.1 1-bit shift register
	6.12.2 8-bit shift register
	6.13 Copy commands (bit-to-byte transfer)
	6.13.1 Copy eight 1-bit operands to one byte
	6.13.2 Copy one byte to eight 1-bit operands
	6.13.3 Copy sixteen 1-bit operands to two bytes
	6.13.4 Copy two byte to sixteen 1-bit operands
	6.14 Comparator circuits
	6.14.1 8-bit comparator
	6.14.2 16-bit comparator
	6.15 Arithmetic functions
	6.15.1 Binary 8-bit adder
	6.15.2 Binary 16-bit adder
	6.15.3 8-bit BCD adder
	6.15.4 Binary 8-bit subtractor
	6.15.5 Binary 16-bit subtractor
	6.15.6 8-bit BCD subtractor
	6.15.7 Binary 8-bit multiplicator
	6.15.8 Binary 16-bit multiplicator
	6.15.9 Binary 8-bit divider
	6.15.10 Binary 16-bit divider
	6.16 Code converters
	6.16.1 BCD-to-binary converter, 8-bit
	6.16.2 Binary-to-BCD converter, 8-bit
	6.16.3 BCD-to binary converter, 16 bit
	6.16.4 Binary-to-BCD converter, 16 bit
	6.17 Modular programming
	6.17.1 Part task definition
	6.17.1.1 Module structure
	6.17.1.2 Documentation
	7 Troubleshooting
	7.1 “Failure“ LED flashing?
	7.2 LEDs „run/stop“ and „failure“ light up red
	7.3 No online connection to KUBES?
	8 Data summary
	8.1 Technical data
	8.1.1 Design
	8.1.2 System power supply
	8.1.3 System status indicators
	8.1.4 Serial interface
	8.1.5 Programming
	8.1.6 Digital inputs
	8.1.7 Digital outputs
	8.1.8 Processor and memory
	8.1.9 Operands
	8.2 Order specifications
	8.2.1 Controllers
	8.2.2 Accessories
	9 Index

