
Kopfzeile ungerade Seite

1

Kuhnke Electronics
Instruction Manual
Eco Control 667E
Small compact PLC
E 556 GB 3 December 1998 / 77.931

Kopfzeile gerade Seite

This data sheet is primarily intended for use by design, project, and deve-
lopment engineers. It does not give any information about delivery possibili-
ties. Data is only given to describe the product and must not be regarded as
guaranteed properties in the legal sense. Any claims for damages against us
- on whatever legal grounds - are excluded except in instances of deliberate
intent or gross negligence on our part.

We reserve the rights for errors, omissions and modifications.
Reproduction even of extracts only with the editor's express and written prior
consent.

Table of contents

3

Table of contents

1 Introduction... 11
1.1 Features... 11
1.2 Successor to Pico/Compact Control KUAX 667......................... 12

2 Reliability, safety ... 13
2.1 Target group .. 13
2.2 Reliability ... 13
2.3 Notes .. 14

2.3.1 Danger ... 14
2.3.2 Dangers caused by high contact voltage............................ 14
2.3.3 Important information / cross reference.............................. 14

2.4 Safety .. 15
2.4.1 Observe during planning and installation........................... 15
2.4.2 Observe during maintenance or servicing 16

2.5 Electromagnetic compatibility... 17
2.5.1 Definition .. 17
2.5.2 Resistance to interference.. 17
2.5.3 Interference emission.. 18
2.5.4 General notes on installation... 18
2.5.5 Protection against external electrical influences.................. 19
2.5.6 Cable routing and wiring.. 19
2.5.7 Location of installation.. 19
2.5.8 Particular sources of interference 20

3 Hardware... 21
3.1 Model variants ... 21
3.2 Top view.. 22

3.2.1 Eco Control 667E 8/8.. 22

Table of contents

4

3.2.2 Eco Control 667E 16/16.. 23
3.2.3 Eco Control 667E 32/32.. 24

3.3 Mechanical design ... 24
3.3.1 Installation... 25
3.3.2 Earthing .. 26

3.4 Power supply.. 27
3.4.1 System power supply.. 27

3.5 Digital inputs .. 28
3.6 Digital outputs .. 29
3.7 Serial interface COM1.. 30
3.8 Light emitting diodes ... 30
3.9 Processor ... 31

3.9.1 On-chip RAM... 31
3.10 Memory distribution.. 31

3.10.1 Operating system... 31
3.10.2 User program .. 31
3.10.3 Data memory... 33
3.10.4 NV-RAM: special features ... 33
3.10.5 On-chip RAM: special features .. 34

4 Software... 35
4.1 Operative approach ... 35

4.1.1 PLC cycle... 36
4.2 Operand ranges... 43

4.2.1 Definitions ... 44
4.2.2 Summary of operands .. 45
4.2.3 Set operand functions ... 46

4.3 Description of commands .. 47
4.4 Types of operands .. 48

4.4.1 Addressing.. 49

Table of contents

5

4.4.2 Summary of commands .. 50
4.5 Programming modules... 65

4.5.1 Organisation module.. 66
4.5.2 Program module .. 66
4.5.3 KUBES module... 66
4.5.4 Module hierarchy... 67

5 KUBES modules... 69
5.1 KUBES module libraries... 70

5.1.1 Contents of the KUBES module library................................ 71
5.1.2 Loading KUBES modules... 72

5.2 Communication modules ... 73
5.2.1 Reserved operands... 74
5.2.2 V.24 mode settings .. 75
5.2.3 Sending single characters (V24667IS) 76
5.2.4 Receiving single characters (V24667IE) 77
5.2.5 Sending strings (SST667IN) .. 78
5.2.6 Example program “serial communication“.......................... 79

5.3 Copying data (blocks)... 83
5.3.1 Reserved operands... 83
5.3.2 Operands’ intermediate code addresses 84
5.3.3 Reading data (RD_OFFS) .. 85
5.3.4 Writing data (WR_OFFS).. 86
5.3.5 Example program “copy data block“................................. 87

6 Examples .. 91
6.1 Basic functions.. 91

6.1.1 AND... 91
6.1.2 OR.. 91
6.1.3 Negated input ... 92
6.1.4 Negated output.. 92

Table of contents

6

6.1.5 NAND.. 93
6.1.6 NOR... 93
6.1.7 XO: exclusive OR (antivalence) ... 94
6.1.8 XON: exclusive NOR (equivalence) 94
6.1.9 Seal-in circuit ... 95

6.2 Memory functions ... 96
6.2.1 Mainly resetting ... 96
6.2.2 Mainly setting.. 96

6.3 Switching circuits .. 97
6.3.1 OR-AND circuit .. 97
6.3.2 Parallel circuit to output .. 97
6.3.3 Network with one output... 98
6.3.4 Networ with outputs and marker.. 99

6.4 Special markers used as AND/OR marker.............................. 100
6.4.1 Network with OR marker .. 100
6.4.2 Network with AND marker ... 101
6.4.3 Network with multiple use of the OR marker 102

6.5 Circuit conversion... 103
6.6 Special-purpose circuits ... 104

6.6.1 Impulse relay ... 104
6.6.2 Reversing circuit (reversing starter) with forced stop........... 105
6.6.3 Reversing circuit (reversing starter) without forced stop 106

6.7 Edge evaluation (wiping pulse) .. 107
6.7.1 Programmable wiping pulse at rising edge....................... 107
6.7.2 Programmable wiping pulse at falling edge...................... 108
6.7.3 Wiping pulse at positive signal 109
6.7.4 Wiping pulse at negative signal 110

6.8 Software timers... 111
6.8.1 Mnemonics.. 111

Table of contents

7

6.8.2 Impulse at start-up .. 113
6.8.3 Impulse of constant duration.. 114
6.8.4 Raising delay... 115
6.8.5 Falling delay.. 116
6.8.6 Pulse generator with wiping pulse output.......................... 117
6.8.7 Flash generator with one timer .. 118
6.8.8 Flash generator with two timers 119

6.9 Programmable clock ... 120
6.10 Software counters ... 121

6.10.1 Mnemonics.. 121
6.10.2 Up-counter to 12.. 122

6.11 Programming a sequential process ... 123
6.12 Register circuits... 125

6.12.1 1-bit shift register.. 125
6.12.2 8-bit shift register.. 126

6.13 Copy commands (bit-to-byte transfer) 127
6.13.1 Copy eight 1-bit operands to one byte............................. 127
6.13.2 Copy one byte to eight 1-bit operands............................. 127
6.13.3 Copy sixteen 1-bit operands to two bytes 127
6.13.4 Copy two byte to sixteen 1-bit operands 128

6.14 Comparator circuits .. 128
6.14.1 8-bit comparator .. 128
6.14.2 16-bit comparator .. 129

6.15 Arithmetic functions... 130
6.15.1 Binary 8-bit adder .. 130
6.15.2 Binary 16-bit adder.. 131
6.15.3 8-bit BCD adder... 132
6.15.4 Binary 8-bit subtractor .. 133
6.15.5 Binary 16-bit subtractor .. 134

Table of contents

8

6.15.6 8-bit BCD subtractor ... 135
6.15.7 Binary 8-bit multiplicator ... 136
6.15.8 Binary 16-bit multiplicator ... 137
6.15.9 Binary 8-bit divider... 138
6.15.10 Binary 16-bit divider ... 139

6.16 Code converters ... 140
6.16.1 BCD-to-binary converter, 8-bit.. 140
6.16.2 Binary-to-BCD converter, 8-bit.. 141
6.16.3 BCD-to binary converter, 16 bit 142
6.16.4 Binary-to-BCD converter, 16 bit.. 144

6.17 Modular programming.. 146
6.17.1 Part task definition.. 146

7 Troubleshooting... 153
7.1 “Failure“ LED flashing? à Short circuit................................... 153
7.2 LEDs „run/stop“ and „failure“ light up red à Undervoltage..... 153
7.3 No online connection to KUBES?.. 154

8 Data summary... 157
8.1 Technical data.. 157

8.1.1 Design .. 157
8.1.2 System power supply.. 157
8.1.3 System status indicators .. 158
8.1.4 Serial interface .. 158
8.1.5 Programming... 158
8.1.6 Digital inputs ... 159
8.1.7 Digital outputs.. 160
8.1.8 Processor and memory ... 161
8.1.9 Operands.. 161

8.2 Order specifications.. 162
8.2.1 Controllers... 162

Table of contents

9

8.2.2 Accessories ... 162
9 Index.. 163
Sales & Service

Table of contents

10

Introduction

11

1 Introduction
Eco Control 667E is a small high-performance PLC. Due to
its compact design it is well-suited for all applications that
expect a lot of “functionality” from a small machine.

Fig. 1: Eco Control 667E 16/16

1.1 Features
Ø Easy installation due to the integrated snap-on device
for carrier rails.
Ø Program and data memories are located in the built-in
NV-RAM (non-volatile RAM).
Ø Program and remanent operands are permanently sto-
red without any energy from outside (battery or accumula-
tor).
Ø Set of operands:
- Inputs: 8, 16, 32 (depending on model)
– Outputs: 8, 16, 32 (depending on model)
– Bit markers: 1320, inc. 512 remanent markers
– Byte markers: 2816, inc. 2304 remanent markers
– Timers: 32, 10 ms...65535 min, quartz-precision
– Counters: 32, 0...65535
Ø Programming via PC, MSWindows und KUBES

Introduction

12

1.2 Successor to Pico/Compact Control KUAX 667
Eco Control 667E is the legitimate replacement for “Pico/
Compact Control KUAX 667“.
Apart from its software being compatible with the older ty-
pes it also features a couple of major improvements:
Ø The device is smaller although its performance is the

same.
Ø Installation is easier due to the integrated snap-on de-

vice.
Ø Modern manufacturing techniques ensure that you get a

lot more value for more money.
Ø A plug-type memory module is no longer required be-

cause the program is stored in the built-in NV-RAM.
Ø No battery or accumulator because the NV-RAM safely

stores programs and data.
Ø The controller is CE-certified.

Reliability/Safety

13

2 Reliability, safety

2.1 Target group
This instruction manual contains all information necessary
for the use of the described product (control device, control
terminal, software, etc.) according to instructions. It is writ-
ten for the personnel of the construction, project planning,
service and commissioning departments. For proper under-
standing and error-free application of technical descripti-
ons, instructions for use and particularly of notes of danger
and warning, extensive knowledge of automation techno-
logy is compulsory.

2.2 Reliability
Reliability of Kuhnke controllers is brought to the highest
possible standards by extensive and cost-effective means in
their design and manufacture.
These include:
Ø selecting high-quality components,
Ø quality agreements with our sub-suppliers,
Ø measures for the prevention of static charge during the
handling of MOS circuits,
Ø worst case planning and design of all circuits,
Ø inspections during various stages of fabrication,
Ø computer aided tests of all assembly groups and their
coefficiency in the circuit,
Ø statistical assessment of the quality of fabrication and
of all returned goods for immediate taking of corrective ac-
tion.

Reliability/Safety

14

2.3 Notes
Despite the measures described in chapter 2.2, the occur-
rence of faults or errors in electronic control units - even if
most highly improbable - must be taken into consideration.
Please pay particular attention to the additional notes
which we have marked by symbols in this instruction ma-
nual:

2.3.1 Danger
This symbol warns you of dangers which may cause
death, (grievous) bodily harm or material damage if the
described precautions are not taken.

2.3.2 Dangers caused by high contact voltage
This symbol warns you of dangers of death or (grievous)
bodily harm which may be caused by high contact volta-
ge if the described precautions are not taken.

2.3.3 Important information / cross reference
This symbol draws your attention to important additional
information concerning the use of the described product. It
may also indicate a cross reference to information to be
found elsewhere.

Reliability/Safety

15

2.4 Safety
Our product normally becomes part of larger systems or in-
stallations. The following notes are intended to help inte-
grating the product into its environment without dangers for
humans or material/equipment.

2.4.1 Observe during planning and installation
Ø 24V DC power supply: Generate as electrically safely
separated low voltage. Suitable devices are, for example,
split transformers constructed in compliance with European
standard EN 60742 (corresponds to VDE 0551).
Ø In case of power breakdowns or power fades: the
program is to be structured in such a way as to create a
defined state at restart that excludes dangerous states.
Ø Emergency switch-off installations must comply with
EN 60204/IEC 204 (VDE 0113). They must be effective at
any time.
Ø Safety and precautions regulations for qualified appli-
cations have to be observed.
Ø Please pay particular attention to the notes of warning
which, at relevant places, will make you aware of possible
sources of dangerous mistakes or faults.
Ø Relevent standards and VDE regulations are to be ob-
served in every case.
Ø Control elements are to be installed in such a way as
to exclude unintended operation.
Ø Control cables are to be layed in such a way as to ex-
clude interference (inductive or capacitive) which could in-
fluence controller operation or its functionality.
To achieve a high degree of conceptual safety in planning
and installing an electronic controller it is essential to ex-

Reliability/Safety

16

actly follow the instructions given in the manual because
wrong handling could lead to rendering measures against
dangers ineffective or to creating additional dangers.

2.4.2 Observe during maintenance or servicing
Ø Precautions regulation VBG 4.0 must be observed,
and section 8 (Admissible deviations during working on
parts) in particular, when measuring or checking a control-
ler in a power-up condition.
Ø Repairs must only be made by specially trained Kuhn-
ke staff (usually in the main factory in Malente). Warranty
expires in every other case.
Ø Spare parts:
Ø Only use parts approved of by Kuhnke. Only genuine
Kuhnke modules must be used in modular controllers.
Ø In the case of modular systems: modules are to be
dead when plugging or unplugging them. They may
otherwise be destroyed or their functionality adversely af-
fected, the latter without you necessarily noticing immedia-
tely.
Ø Dispose of any batteries and accumulators as hazar-
dous waste.

Reliability/Safety

17

2.5 Electromagnetic compatibility

2.5.1 Definition
Electromagnetic compatibility is the ability of a device to
function satisfactorily in its electromagnetic environment wi-
thout itself causing any electromagnetic interference that
would be intolerable to other devices in this environment
Of all known phenomena of electromagnetic noise, only a
certain range occurs at the location of a given device. This
noise depends on the exact location. It is defined in the re-
levant product standards.
The international standard regulating construction and de-
gree of noise resistance of programmable logic controllers
is IEC 1131-2 which, in Europe, has been the basis for Eu-
ropean standard EN 61131-2.

2.5.2 Resistance to interference

Ø Electrostatic discharge, ESD
in acc. with EN 61000-4-2, 3rd degree of sharpness
Ø Irradiation resistance of the device, HF
in acc. with EN 61000-4-3, 3rd degree of sharpness
Ø Fast transient interference, burst
in acc. with EN 61000-4-4, 3rd degree of sharpness
Ø Immunity to damped oscillations
in acc. with EN 61000-4-12 (1 MHz, 1 kV)

Reliability/Safety

18

2.5.3 Interference emission
Interfering emission of electromagnetic fields, HF
in acc with EN 55011, limiting value class A, group 1

If the controller is designed for use in residential areas,
then high-frequency emissions must comply with limiting
value class B as described in EN 55011.
Fitting the controller into an earthed metal cabinet and
equipping the supply cables with filters are appropriate
means for maintaining the relevant limiting values

2.5.4 General notes on installation
As component parts of machines, facilities and systems,
electronic control systems must comply with valid rules and
regulations, depending on the relevant field of application.
General requirements concerning the electrical equipment
of machines and aiming at the safety of these machines are
contained in Part 1 of European standard EN 60204 (cor-
responds to VDE 0113.

For safe installation of our control system please observe
the following notes

:

Reliability/Safety

19

2.5.5 Protection against external electrical
influences

Connect the control system to the protective earth conduc-
tor to eliminate electromagnetic interference. Ensure practi-
cal wiring and laying of cables.

2.5.6 Cable routing and wiring
Separate laying of power supply circuits, never together
with control current loops:
Ø DC voltage 60 V ... 400 V
Ø AC voltage 25 V ... 400 V

Joint laying of control current loops is allowed for:

Ø shielded data signals
Ø shielded analogue signals
Ø unshielded digital I/O lines
Ø unshielded DC voltages < 60 V
Ø unshielded AC voltage < 25 V

2.5.7 Location of installation
Make sure that there are no impediments due to temperatu-
res, dirt, impact, vibration and electromagnetic interfe-
rence.

Temperature
Consider heat sources such as general heating of rooms,
sunlight, heat accumulation in assembly rooms or control
cabinets.

Reliability/Safety

20

Dirt
Use suitable casings to avoid possible negative influences
due to humidity, corrosive gas, liquid or conducting dust.

Impact and vibration
Consider possible influences caused by motors, compres-
sors, transfer lines, presses, ramming machines and ve-
hicles.

Electromagnetic interference
Consider electromagnetic interference from various sources
near the location of installation: motors, switching devices,
switching thyristors, radio-controlled devices, welding
equipment, arcing, switched-mode power supplies, conver-
ters / inverters.

2.5.8 Particular sources of interference

Inductive actuators
Switching off inductances (such as from relays, contactors,
solenoids or switching magnets) produces overvoltages. It
is necessary to reduce these extra voltages to a minimum.
Reducing elements may be diodes, Z-diodes, varistors or
RC elements. To find the best adapted elements, we re-
commend that you contact the manufacturer or supplier of
the corresponding actuators for the relevant information.

Hardware

21

3 Hardware
Eco Control 667E is a compactly built controller in a hou-
sing with an integrated snap-on device for installation on
carrier rails
Inputs and outputs are connected to it by means of screw-
type locking terminals. A female 9-pin D-Sub connector
serves as the interface for communication with program-
ming PCs or other devices such as dialogue terminals.

3.1 Model variants
The different variants vary in their I/O configuration.
Ø Eco Control 667E 8/8

8 digital inputs
8 digital outputs
1 serial interface (V.24)

Ø Eco Control 667E 16/16
16 digital inputs
16 digital outputs
1 serial interface (V.24)

Ø Eco Control 667E 32/32 (in preparation)
32 digital inputs
32 digital outputs
1 serial interface (V.24)

Hardware

22

3.2 Top view
This view tells you where the connectors and light emitting
diodes (LEDs) are located on the device.

3.2.1 Eco Control 667E 8/8
System response LEDs

Power supply to outputs
8 digital outputs
(underneath:red LEDs)

90

152

com1

L1+L1-

failure

667.751.00

run/stop L2-L2+
24VDC

Digital Output 24V DC 0.5A

Digital Input 24V DC
24VDC 0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

8 digital inputs
(above: green LEDs)

Power supply to system
Serial interface (V.24)

Fig. 2: Top view of Eco Control 667E 8/8

Hardware

23

3.2.2 Eco Control 667E 16/16
System response LEDs

Power supply to outputs
16 digital outputs
(underneath:red LEDs)

90
152

com1

L1+L1-

failure

667.752.00

run/stop L2-L2+
24VDC

Digital Output 24V DC 0.5A

Digital Input 24V DC
24VDC 0 1 2 3 4 5 6 7 8 910 11121314 15

0 1 2 3 4 5 6 7 8 91011 12 131415

16 digital inputs
(above: green LEDs)

Power supply to system
Serial interface (V.24)

Fig. 3: Top view of Eco Control 667E 16/16

Hardware

24

3.2.3 Eco Control 667E 32/32
 System response LEDs
 Power supply to outputs Power supply to outputs

16 digital outputs
address O00.xx
(underneath:red LEDs)

16 digital outputs
address O01.xx
(underneath:red LEDs)

90

268

com1

L1+L1-

failure

667.704.00

run/stop L2-L2+
24VDC

Digital Output 24V DC 0.5A (address 00.xx)

Digital Input 24V DC (address 00.xx)
24VDC 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 1213 14 15
L2-L2+

24VDC
Digital Output 24V DC 0,5A (address 01.xx)

Digital Input 24V DC (address 01.xx)

0 1 2 3 4 5 6 7 8 9 1011 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 digital inputs
address I00.xx
(above: green LEDs)

16 digital inputs
address I01.xx
(above: green LEDs)

 Power supply to system
 Serial interface (V.24)

Fig. 4: Top view of Eco Control 667E 32/32

3.3 Mechanical design
The housing mainly consists of an aluminium profile with an
integrated snap-on device for installation on carrier rails.
The side walls of galvanised sheet metal steel are riveted to
the aluminium profile. The hooks of the plastic cover snap
into the appropriate holes in the side walls.

Hardware

25

3.3.1 Installation
Eco Control 667E is designed for installation on carrier
rails (in acc. with DIN EN 50022, 35 x 7.5 mm).

Procedure
1 Push the device against the

carrier rail such that the me-
tal spring snaps into the
space between carrier rail
and installation surface (see
illustration).

 Metal spring

2 Push the device up
against the installation
wall until it snaps in.

Fig. 5: Installation on carrier rail

Hardware

26

3.3.2 Earthing
The metal housing is to be connected to earth. Each side
wall has an earthing connector integrated into it (see arrow
in illustration):

Fig. 6: Earthing connector

Ø Type of connector
Connect plain plug 6.3 x 0.8 mm (fast-on) to at least 1
of the side walls

Ø Earthing lead
Diameter: min. 2.5 mm²
Length: as short as possible

Ø Function: earth connection of functions.
No protection against high contact voltage. To ensure
the protective function, make sure that the devices are
supplied with safely separated small voltages (see
chapter 2.4.1).

Ø The casing of the COM1 connector for the serial port
directly connects to the earth connection of functions.
This is where you attach the cable shielding.

Ø The connectors for +24V DC and 0V supply are inter-
nally (by spring contacts on the PCB) and capacitively
connected to the housing and, thus, to earth. High-
frequency interference is conducted to earth via this
channel.

Hardware

27

3.4 Power supply
System and outputs are supplied via separate connectors
(for the location of the connectors see chapter 3.2). This al-
lows you to switch off all outputs without having to discon-
nect the controller from its power source.
To ensure uninterrupted operation, lay the supply cables
separately, using the shortest possible cables to connect
the power source with the controller’s supply terminals.
If you are using two different power source, you are obli-
ged to equalise the potential between the 0V connectors.

3.4.1 System power supply
The system power supply connects to a 2-pin plug-type ter-
minal block.
Ø Connectors: L1- à 0V

L1+ à
+24V DC

Ø Voltage: 24 V DC -20%/+25%
Ø Power consumption: c. 100 mA

The outputs are supplied separately. However, potentials of
system and output supplies are not separated.

For a description of the output supply voltage connector
refer to chapter 3.6.

Hardware

28

3.5 Digital inputs
The inputs pick up the digital signals of a variety of sour-
ces. They connect to the device by screw-type locking ter-
minals (à illustrations in chapter 3.2). Make sure that they
work within the switching thresholds indicated below,
which particularly applies to proximity switches and semi-
conductor sensors. The input circuitry adapts the incoming
signals to the system voltage.
Ø Defined signals and switching thresholds

Logical 0 ≤ 5 V
Logical 1 ≥ 15 V
(Hysteresis 1...4 V)

Ø Signal delay
Peak voltages (noise impulses) are filtered to avoid
them being considered as valid signals which might trip
unintended switching actions. This delays signal detec-
tion by rated 5 ms:

Input signals are read between program cycles and writ-
ten into the process image . To calculate the average
availability of signals to the user program, you must there-
fore add the program cycle time to the specified delays.

24

15

5

t[ms]

U [V]

1

0

S ignal t ve tva

Raising delay:
 tve = 3.0...7.0 ms
Falling delay:
 tva = 4.0...7.0 ms

Fig. 7: Input signal delay

Hardware

29

3.6 Digital outputs
Digital outputs are the connection to external actuators (re-
lays, contactors, solenoids, valves...). They connect to the
controller by screw-type locking terminals (à illustrations in
chapter 3.2). You can control resistive and inductive loads.
Free-wheeling diodes suppress inductive switch-off peaks.
The output status is indicated by LEDs.

Output power supply
The output power supply connects to a 2-pin plug-type ter-
minal block (à illustrations in chapter 3.2).
Ø Connectors: L2- à 0V

L2+ à
+24V DC

Ø Voltage: 24 V DC -20%/+25%
Ø Power consumption: depends on the load on the

outputs

Protection against short circuit- and overload
Outputs are protected against destruction by overload or
short circuit. In case of a fault, all outputs are disabled and
the “failure” LED flashes (à 7.1)

Hardware

30

3.7 Serial interface COM1
The serial interface mainly provides a connection to pro-
gramming PCs. Apart from that it can also be used for
communication with other devices such as dialogue termi-
nals, for example.
Ø Type

V.24 (RS 232)
Ø Connector

female 9-pin D-Sub connector
Ø Pin wiring

2 TxD
3 RxD
5 Gnd

Ø Cable shielding
connects to the plug’s frame ground.
The metal connector casing is directly connected to the
frame and, thus, to earth if the device is properly eart-
hed (see chapter 3.3.2).

3.8 Light emitting diodes
Two LEDs indicate the system status:
Ø run/stop

lights up green while the PLC program is running
lights up red when the PLC program stops

Ø failure
flashes red if there is a short at an output

Hardware

31

3.9 Processor
The core unit of the controller is its single-chip microproces-
sor, type 80C535. It gets its commands from the monitor
program and the user program (à 3.10).

3.9.1 On-chip RAM
The microprocessor features an integrated on-chip RAM (à
3.10.5) which allows very fast accesses.

3.10 Memory distribution
The controller has four types of memory:
Flash EPROM, NV-RAM, SRAM and on-chip RAM.

3.10.1 Operating system
The operating system is stored in the flash EPROM. It con-
tains the system software and is loaded at the Kuhnke fac-
tory before delivery. Users cannot directly access this type
of memory.

3.10.2 User program
The user program is safely stored in the NV-RAM (à
3.10.4). The device reserves 32 kbyte for the user pro-
gram.
By default, the user program is stored in machine language
code and also in KUBES’ intermediate code. The latter al-
lows KUBES to retrieve the program from the controller.

Hardware

32

3.10.2.1 Disable retrievability = increase capacity

Storing the intermediate code in memory can be disabled
by writing into operand SLG14.05 via the user program.
There are two effects:
Ø The capacity of the program memory is increased.
Ø The program is secured against unauthorised access be-

cause it can no longer be disassembled.
SLG14.05 = 0

<> 0
enable intermediate code storage
disable intermediate code storage

Before the program is transmitted to the controller, KUBES
(version 5.30 or higher) displays the following dialog:

Fig. 8: Program retrievability settings in KUBES

KUBES automatically writes into SLG14.05
Ø Setting “All modules retrievable“:

[SLG14.05] ç 0
Ø Setting “No module retrievable“:

[SLG14.05] ç 255

Hardware

33

3.10.3 Data memory
Data in this context comprises all operands (inputs and
outputs, bit markers, byte marker, timers and counters). The
monitor program also falls back on some parts of this me-
mory for internal purposes.
8 kbyte of the NV-RAM described in chapter 3.10.4 are
reserved for no-voltage protected operands (also called
remanent operands).
The volatile (non-remanent) operands are stored in a 24
kbyte S-RAM. This type of memory is cleared when the de-
vice is being initialised to ensure that all memory cells have
a defined status (0).
Inputs and output (Ixx.xx and Oxx.xx) as well as 40
markers (M00.00...M02.07) are mapped onto the micro-
processor’s so-called on-chip RAM. These addresses can be
accessed particularly fast (à 3.10.5).

3.10.4 NV-RAM: special features
NV-RAM technology (non-volatile RAM) ensures that pro-
grams and data are stored safely without the use of exter-
nal energy (accumulator or battery) even if you disconnect
the device from the mains. They’re stored without any limi-
tation in time no matter how long the device remains swit-
ched off for. They resume their previous status when you
restart the controller.

Hardware

34

3.10.5 On-chip RAM: special features
The on-chip RAM is part of the microprocessor. It can be
addressed by individual bits. Accesses to this type of me-
mory are about twice as fast as accesses to the external ty-
pes of memory, i.e. S-RAM and NV-RAM. The on-chip RAM
is therefore fully occupied. Addresses are assigned to the
following operands:
Ø 32 inputs (I00.00...I01.15)
Ø 32 outputs (O00.00...O01.15)
Ø 40 markers (M00.00...M02.07)

Software

35

4 Software

4.1 Operative approach
The microprocessor receives its program from two program
memories:
Ø the memory containing the operating system
Ø the memory containing the user program

Operating system memory
It contains the operating system and all system features of
Eco Control 667E. It is permanently installed in the device
(à 3.10.1).

User program memory
It contains the programs required for controlling the machi-
ne or system. The programs are written in KUBES, Kuhnke
programming software package. The user program memo-
ry is permanently installed in the device (à 3.10.2).

The next chapters only detail the knowledge you need to
write user programs for Eco Control 667E.
The method of how to actually input the program is not ex-
plained. For a description refer to:

Instruction manuel KUBES, E327GB

Software

36

4.1.1 PLC cycle
As a typical PLC, Eco Control 667E cyclically processes the
user program in the program memory.

Cycle time
The controller’s overall action in time is indicated by the
cycle time which is influenced by a variety of factors:
Ø command execution time
Ø length and structure of the program
Ø monitor functions
Ø self-test functions
Ø KUBES functions

Software

37

4.1.1.1 The 4 phases of a PLC cycle

Ø Update process image
The status of the inputs is read and written into an in-
ternal RAM range (operand range I00.00 ...). The
program uses these values in the next cycle.
Exception:
Operations with byte input markers BIxx.xx immediate-
ly read the inputs without waiting for the next update
of the process image.

Ø Process program
Program processing always starts with the first line of
the ORG module and ends with the last line of the
ORG module (see example "structured programming").
The calculated values (assignments) are written into the
process image memory.

Ø Update outputs
The output markers are copied to the outputs only at
the end of a complete program processing cycle. Thus,
even if the outputs have been changed by the program
several times, only the last status will be output to the
relevant terminal.
Exception:
Assignments to byte output markers BOxx.xx immedia-
tely write their result into the output memories without
waiting for the process image to update the outputs.

Ø Internal PLC action
In certain cases, the CPU has to respond to requests
that are required for self-testing or for communication
with the programming PC.

Software

38

4.1.1.2 Minimum cycle time

The time it takes to complete a PLC cycle is shortest if the
PLC just processes the program.

Calculating the cycle time
Ø Sum total of execution times of module call commands
Ø Sum total of command execution times
(see table Set of Commands)
Ø Process image update: 25 µs
However, due to the possibility of using conditional module
calls and conditional jump commands (JPC...), the cycle ti-
me also depends on the internal and external states used
as conditions.
This gives the programmer the chance to optimise the pro-
gram runtime by cleverly arranging his program.
A clear project structure ensures that the PLC is only enga-
ged in operations that are relevant to the control process at
that time.
Another benefit ensues from storing the most frequently
used bit operands in the on-chip RAM, because accesses to
this memory are twice as fast as accesses to other types of
memory (à 3.10.5).

Software

39

4.1.1.3 Influence of timer interrupts on the cycle time

The programmable timers depend on highest precision.
This is ensured by a quartz crystal and the relevant fre-
quency dividers that generat impulses which, in turn, gene-
rate interrupts at the intervals set by the programmable ti-
mers (10 ms, 100 ms, 1 s, 10 s).
If the timers are enabled, these timer interrupts lead to the
current time values being incremented or decremented
which means that the timer outputs may have to be adju-
sted. This is added to by the updating of the clock pulse
markers (C00.00-03).
Processing of the current program is therefore to be inter-
rupted, the contents of the CPU registers is to be saved and
stored for continuation later.

4.1.1.3.1 Extension of the cyle time

The amount of time by which the cycle is extended due to
the handling of timer interrupts depends on the number of
currently active programmable timers.

Worst case
Every 10 ms, the PLC cycle is extended by c. 2 ms if all of
the 32 possible timers have been programmed as clock
pulses with the same time on the basis of 10 ms and if they
are all enabled.

Best case
In the best case, the cycle time is extended by only 0.4 ms.

Software

40

4.1.1.4 Influence of communication on the cycle time

Both programming and testing online in the KUBES envi-
ronment and man-machine communication with operating
terminals demand data exchange via the V.24 port. this
communication is interrupt-controlled and can extend the
cycle time by up to 10%, given a transfer rate of 9600
baud.

Status information
In certain intervals, KUBES requests information from the
controller even if there is no actual communication:
Frequency: every 5 s
Delay: 1 ms

Dynamic displays
The single address and address range displays, the logic
diagram or the dynamic display in the Module Editor allow
you to permanently read and display up to 256 operands.
You can reduce the resulting time load by either loading
fewer program lines into the Module Editor or by using the
single address instead of the address range display
Examples
Ø The dynamic display of 224 byte (14 lines with
C1T16 SMxx.xx) in the Module Editor can extend a pro-
gram cycle of 2 ms by another 2 ms (worst case).
Ø Having the address range display dynamically rea-
ding a complete marker range extends the cycle time by c.
0.5 ms.

Software

41

4.1.1.5 Changing the program in run mode, transmitting
a module

The user program can be changed without interrupting the
program run. When you transmit a changed module, the
controller needs some time to receive, interpret and insert
the module as well as to calculate its checksum.
Extension of cycle time: c. 10 %
Duration: depends on the length of program and the cycle
time

4.1.1.6 Restarting the controller after changes in Stop/
Reset mode

Modifying the program memory while the controller is in
Stop or Reset mode also modifies the checksum required
for the memory test. The checksum is calculated when you
restart the controller (RUN). The controller will resume run
mode only when the checksum test has been completed
successfully.

Software

42

4.1.1.7 Programming

For programming and testing, connect the programming
PC with the appropriate interface as described in chapter
3.7.

Requirements
Ø PC running MSWindows
Ø Programming software KUBES (part no. 680.502.00)
installed on the PC
Ø Programming cable (part no. 657.151.03)
– Connect with the PC’s COM port as specified in KUBES
(à below, Fig. 9)
– Connect with the PLC’s programming interface

Data transfer rate
The transfer format is set to: 9600 bit/s,
8 data bits, 1 start bit, 1 stop bit, odd parity

Fig. 9: KUBES interface parameters

Software

43

4.2 Operand ranges
All addresses used by the program for signal processing or
data storage are called operands. They are “operated”
with.
Eco Control 667 provides a large number of operands.
Please refer to the table in chapter 4.2.2.

Software

44

4.2.1 Definitions

Inputs
Signals that are fed into the controller and read by the user
program.

Outputs
Signals that are generated by the program in the controller
and picked up externally as control signals. They switch on
lamps, drives etc.

Markers
Signals that are used inside the controller for storing states
and supporting complex logical operations. There are two
types of markers:
Ø bit markers (1-bit signals) and
Ø byte marker (8-bit signals).

Timers
They control time processes.

Counters
They count events or increments output by pulse generators.

Software

45

4.2.2 Summary of operands
Operands

from to
Name Max.

qty.
Bits Description

I00.00 I01.15 Digital
inputs

32 1

O00.00 O01.15 Digital
outputs

32 1

Max. I/O configuration depends on the
model variant (à 3.1).
The process image of inputs and outputs is
stored in the on-chip RAM (à 3.10.5),
therefore fast access

BI00.00

BO00.00

BI00.03

BO00.03

Byte
inputs
Byte
outputs

4
4

8
8

For reading inputs directly by byte (wi-
thout process image).
For writing outputs directly by byte (wi-
thout process image).

M00.00 M02.07 Fast bit
markers

40 1 Bit markers in the on-chip RAM (à
3.10.5), therefore fast access

SM00.00
FM00.00
LM00.00

SM15.15
FM15.15
LM15.15

Bit markers 256
256
256

1
1
1

Bit markers. Divided into groups of 256
for better differentiation.

R00.00
SR00.00

R15.15
SR15.15

Remanent
bit markers

256
256

1
1

Bit markers, stored remanently in the NV-
RAM (à 3.10.4)

BM00.00
SBM00.00

BM15.15
SBM15.15

Byte
markers

256
256

8
8

Byte markers. Divided into groups of 256
for better differentiation.

BR00.00
SBR00.00
BC00.00
SBC00.00
BD00.00
SBD00.00
FBM00.00
LBM00.00
ZBM00.00

BR15.15
SBR15.15
BC15.15
SBC15.15
BD15.15
SBD15.15
FBM15.15
LBM15.15
ZBM15.15

Remanent
byte
markers

256
256
256
256
256
256
256
256
256

8
8
8
8
8
8
8
8
8

Byte markers, stored remanently in the NV-
RAM (à 3.10.4)

PL00.00
PL00.01

Logical 0
Logical 1

1
1

1
1

Programmed logical signals, changing not
possible.

PC00.00 PC00.03 Clock pulse
marker

4 8 Byte operands, incremented at pulse rates
10 ms, 100 ms, 1 s, 10 s.

PP00.00 PP07.15 Progr. pulse 128 1 Evaluates the 0/1 changeover (edges) of
digital signals.

PT00.00 PT01.15 Timers 32 16 Programmable, range: 10 ms – 65535 s
C00.00 C01.15 Counters 32 16 Programmable, range: 10 – 65535
SLF, SLG... Special functions 8 Partly reserved for monitor, KUBES modu-

les, additional modules

Software

46

4.2.3 Set operand functions
When you are planning your project, please take into ac-
count that some of the operands listed above have set func-
tions:

4.2.3.1 Operands reserved for monitor functions

Operand Function
SLG14.00 Internal use
SLG14.01 Undervoltage monitoring (n * 10 ms)
SLG14.02 Reads inputs in case of undervoltage
SLG14.03 Internal use
SLG14.04 Internal use
SLG14.05 Generates the intermediate code
SLG14.06 Transmitting projects: retains remanent data

These operands must not be used for any other purposes.
Failure to obey may render the controller functions unsafe.

4.2.3.2 Operands reserved for KUBES modules

Eco Control 667E has no KUBES module parameters. Indi-
vidual KUBES modules use defined operands that you
should reserve in case you wish to use these operands.
Operand Used by KUBES module
BM00.00...03
BM01.00
FBM00.00...01

WR_OFFS, RD_OFFS

FBM01.00...09 V24667IS, V24667IE, V24667IN

If you wish to embed one or several of the above KUBES
modules in your project, you must make sure that the rele-
vant operands are reserved for this purpse only.

Software

47

4.3 Description of commands
All operations are started by commands. They are execu-
ted in the accumulator of the CPU. Basic terms:
Ø Load commands load a value into the accumulator
Ø Logical operations link the operand value with the con-
tents of the accumulator
Ø Assignments write the contents of the accumulator into
the specified operands (in the case of bit operations: the
status of bit 7)
Ø Set commands set (S) or reset/clear (R) the contents of
the operand if the previous operation in the accumulator
results in “logical 1”.

Software

48

4.4 Types of operands
Eco Control 667E differentiates between three types of
operands which are marked by their size:
Ø Bit 1 bit
Ø Byte 8 bit
Ø Word 16 bit (2 byte)
The accumulator in the CPU of Eco Control 667E can be
used as a bit, byte or word register.
Bit operations are carried out like byte operations, the dif-
ference being that only bit 7 of the 8 bit accumulator is
evaluated.
Byte operations are executed in the same accumulator as
bit operations.
Word operations use a 16-bit accu whose low byte con-
tains the accumulator where bit and byte operations are
executed. Word operations are started by commands who-
se last character is a D (not applicable to byte inputs BIxx
and byte outputs Boxx).

To avoid mistakes we recommend that you do not use
different types of operands in operations that belong toge-
ther.

Software

49

4.4.1 Addressing
There are two different ways of assigning operand values:
Ø absolute value (constant)
Ø contents of an operands
Operand specifiers are made up as follows:

BM00.00

Group mark Group number Channel number
You can use the mnemonic (symbolic name) previously as-
signed to an operands via KUBES’ Symbol Table Editor.
Complete commands (instructions) consist of a command
and an operand (rare exceptional cases have no operand):

Example
L BM00.00
Loads the contents of byte marker BM00.00 into the accu.

Software

50

4.4.2 Summary of commands
The purpose of commands is to “operate” with the ope-
rands (see "4.2 Operand ranges").
Eco Control 667E provides a large number of commands.
They are listed and described in the tables starting on the
next page.

Memory requirements of commands
Normally, the user program is stored twice in the user pro-
gram memory:
Ø as machine code which is read by the processor;
Ø as intermediate code which is used for transfer actions
between PC and PLC in accordance with the KUBES proto-
col. Storing the intermediate code can be disabled by the
relevant instruction in the user program (à 3.10.2.1).
The “No. of bytes” table columns list the memory require-
ments for both cases.

Software

51

4.4.2.1 Logical operation commands

No. of bytes
with w/o

Com-
mand

Operand

interm. code

Proces-
sing
time[µs]

Description

L I00.00

SM00.00
BM00.00
100

5

9
9
6

2

6
6
4

2.0

6.0
6.0
3.0

Load bit operand in on-chip
RAM (à 3.10.5)
Load bit operand
Load byte operand (8 bit)
Load byte constant (8 bit)

LD BM00.00

1000

15

20

12

7

12.5

5.0

Load word operand (16 bit or
2 byte)
Load byte constant (16 bit)

LN I00.00

SM00.00
BM00.00

6

10
10

3

7
7

3.0

6.0
7.0

Load and negate bit operand
in on-chip RAM (à 3.10.5)
Load and negate bit operand
Load and negate byte ope-
rand (8 bit)

A I00.00

SM00.00
BM00.00
100

5

15
13
8

2

12
10
6

2.0

12.0
10.0
5.0

And bit operand in on-chip
RAM (à 3.10.5)
And bit operand
And byte operand (8 bit)
And byte constant (8 bit)

AN I00.00

SM00.00
BM00.00

5

16
14

2

13
11

2.0

13.0
11.0

And bit operand (negated) in
on-chip RAM (à 3.10.5)
And bit operand (negated)
And byte operand (negated)
(8 bit)

O I00.00

SM00.00
BM00.00
100

5

15
13
8

2

12
10
6

2.0

12.0
10.0
5.0

Or bit operand in on-chip
RAM (à 3.10.5)
Or bit operand
Or byte operand (8 bit)
Or byte constant (8 bit)

Software

52

No. of bytes
with w/o

Com-
mand

Operand

interm. code

Proces-
sing
time[µs]

Description

ON I00.00

SM00.00
BM00.00

5

16
14

2

13
11

2.0

13.0
11.0

Or bit operand (negated) in
on-chip RAM (à 3.10.5)
Or bit operand (negated)
Or byte operand (negated) (8
bit)

XO I00.00

SM00.00

BM00.00

100

13

15

13

8

10

12

10

6

8.0

12.0

10.0

5.0

Exclusive-Or (antivalence) bit
operand in on-chip RAM (à
3.10.5)
Exclusive-Or (antivalence) bit
operand
Exclusive-Or (antivalence) byte
operand (8 bit)
Exclusive-Or (antivalence) byte
constant (8 bit)

XON I00.00

SM00.00
BM00.00

14

14
14

11

11
11

8.0

13.0
11.0

Equivalence bit operand in on-
chip RAM (à 3.10.5)
Equivalence bit operand
Equivalence byte operand
(8 bit)

Software

53

4.4.2.2 Assignments and store commands

No. of bytes
with w/o

Com-
mand

Operand

interm. code

Proc.
time [µs]

Description

= O00.00

SM00.00

BM00.00

5

11

9

2

8

6

2.0

8.0

6.0

Equal (assignment) to bit ope-
rand in on-chip RAM (à
3.10.5)
Equal (assignment) to bit ope-
rand
Equal(assignment) to byte
operand (8 bit)

=D BM00.00 17 14 16.0 Equal (assignment) to word
operand (16 bit)

=N O00.00

SM00.00
BM00.00

7

13
11

4

10
8

4.0

12.0
8.0

Equal to negated bit operand
in on-chip RAM (à 3.10.5)
Equal to negated bit operand
Equal to negated byte ope-
rand (8 bit)

S O00.00

SM00.00

7

11

4

8

3.0

8.0

Set bit operand in on-chip
RAM (à 3.10.5)
Set bit operand

R O00.00

SM00.00

7

15

4

12

3.0

12.0

Reset bit opernd in on-chip
RAM (à 3.10.5)
Reset bit operand

Please also read the explanatory notes on the next page.

Software

54

Notes on assignments and store commands
Ø Assignments (=...)
Assignments write the contents of the accumulator into the
specified operand.
Ø Set command (S)
Writes “logical 1” into the specified operand if the prece-
ding operation in the accu resulted in “logical 1”. There is
no influence on the operand if the result in the accu was
“logical 0”.
Ø Reset command (R)
Writes “logical 0” into the specified operand if the prece-
ding operation in the accu resulted in “logical 1”. There is
no influence on the operand if the result in the accu was
“logical 1”.

Software

55

4.4.2.3 Arithmetical operation commands

No. of bytes
with w/o

Com-
mand

Operand

Interm. code

Proc.
time [µs]

Description

ADD BM00.00
100

11
6

4
8

8.0
3.0

Add byte operand
Add byte constant

ADDDBM00.00
1000

28
20

25
17

26.0
18.0

Add word operand
Add word constant

SUB BM00.00
100

13
7

10
5

8.0
3.0

Subtract byte operand
Subtract byte constant

SUBD BM00.00
1000

30
21

27
18

28.0
18.0

Subtract word operand
Subtract word constant

MUL BM00.00
100

12
9

9
7

11.0
7.5

Multiply byte operand
Multipliy byte constant

MULDBM00.00
1000

18
16

15
13

variable
variable

Multiply word operand
Multiply word constant

DIV BM00.00
100

17
11

14
9

12.5
7.5

Divide byte operand
Divide byte constant

DIVD BM00.00
1000

21
19

18
16

variable
variable

Divide word operand
Divide word constant

The contents of the accu is arithmetically combined with
the specified operand
The result of the operation is written into the accu. You
can either use it for further operations or assign it to an
operand.

Software

56

4.4.2.4 Comparison,- shift- and incrementation commands

No. of bytes
with w/o

Com-
mand

Operand

Interm. code

Proc.
time [µs]

Description

CMP BM00.00
100

24
19

21
17

16.0
11.0

Compare with byte operand
Compare with byte constant

CMPD BM00.00
1000

44
40

41
37

38.0
30.0

Compare with word operand
Compare with word constant

LSL No ope-
rand

6 5 3.0 8-bit shift left of contents of
accu

LSR No ope-
rand

6 5 5.0 8-bit shift right of contents of
accu

INC BM00.00 13 10 12.0 Increment byte operand (con-
tents + 1)

DEC BM00.00 13 10 12.0 Decrement byte operand (con-
tents - 1)

INCD BM00.00 45 42 45.0 Increment word operand (con-
tents+ 1)

DECD BM00.00 45 42 45.0 Decrement word operand
(contents - 1)

CLR BM00.00 14 11 14.0 Clear byte operand
NOP No ope-

rand
2 1 1.0 Dummy instruction

Please also read the explanatory notes on the next page.

Software

57

Notes on comparison, shift and incrementation
commands
Ø Compare (CMP...)
Compares the contents of the accu with the contents of the
operand. The result is set as internal flag which is evalua-
ted by jump commands (see "4.4.2.5 Jump commands").
Ø Shift (LS...)
Shifts the contents of the accu by one place.
Ø Increment (INC...), Decrement (DEC...)
Increments or decrements the contents of the accu by 1.

Software

58

4.4.2.5 Jump commands

No. of bytes
with w/o

Com-
mand

Operand

Interm. code

Proc.
time [µs]

Description

JP Label 12 10 5.0 Unconditional jump to spe-
cified label

JPC Label 14 12 6.0 Conditional jump (if logical
1) to specified label

JPCN Label 14 12 6.0 Conditional jump (if logical
0) to specified label

JP= Label 12 13 6.0 Jump to specified label if
equal (after comparison)

JP<> Label 15 13 6.0 Jump to specified label if
not equal (after compari-
son)

JP< Label 18 16 7.5 Jump to specified label if
smaller (after comparison)

JP> BM00.00 15 13 7.5 Jump to specified label if
greater (after comparison)

JP<= Label 18 16 7.5 Jump to specified label if
smaller or equal (after
comparison)

JP>= Label 18 16 7.5 Jump to specified label if
greater or equal (after
comparison)

JPP Program modu-
le

5 3 18.0 Unconditional jump to spe-
cified program module

JPCP Program modu-
le

9 7 18.0 Conditional jump (if logical
1) to specified program
module

Software

59

No. of bytes
with w/o

Com-
mand

Operand

Interm. code

Proc.
time [µs]

Description

JPK KUBES module 7 3 18 Unconditional jump to spe-
cified KUBES module

JPCK KUBES module 11 7 18 Conditional jump (if logical
1) to specified KUBES mo-
dule

Jumps in the program immediately move program proces-
sing to the destination line. This can be either a so-called
label (i.e. a symbolic jump mark) or another module.

Ø Conditional jumps (JPC...)
The jump is taken if the preceding operation resulted in
“logical 1” or “logical 0” (JPCN).
Ø Jumps after comparison (JP= to JP>=)
The jump is taken if the contents of the accu has the speci-
fied mathematical relation to the operand.

Software

60

4.4.2.6 Copy commands

No. of bytes
with w/o

Com-
mand

Operand

Interm. code

Proc.
time [µs]

Description

C1T8 I00.00

SM00.00

7

8

4

5

3/350

200

Copy 8 bit operands from
the on-chip RAM
(à 3.10.5) to the accu
Copy 8 bit operands to the
accu

C8T1 O00.00

SM00.00

5

8

2

5

1/400

200

Copy the contents of the
accu to 8 bit operands in
the on-chip RAM (à
3.10.5)
Copy the contents of the
accu to 8 bit operands

C1T16 I00.00

SM00.00

10

8

7

5

5/650

300

Copy 16 bit operands from
the on-chip RAM
(à 3.10.5) to the accu
Copy 16 bit operands to
the accu

C16T1 O00.00

SM00.00

8

8

5

5

3/750

300

Copy the contents of the
accu to 16 bit operands in
the on-chip RAM (à
3.10.5)
Copy the contents of the
accu to 16 bit operands

Please also read the explanatory notes on the next page.

Software

61

Notes on the copy commands
Copy commands are used to parallely load the contents of
8 or 16 bit operands into the accu or write the contents of
the accu into 8 or 16 bit operands.

Practical applications:
Ø reading binary or BDC values via inputs
Ø controlling numerical displays (e.g. 7-segment display)
The time it takes to process copy commands depends on
the last number of the bit operand’s channel number.
The channel number is indicated after the separating point:

 I00.00

channel number

Processing time is shorter if the channel number ends with
0 or 8.

Example 1
C1T8 I00.00 => processing time: 3 µs

Example 2
C1T8 I00.13 => processing time: 350 µs

Software

62

4.4.2.7 Programmable pulses , timers and counters

No. of bytes
with w/o

Com-
mand

Operand

Interm. code

Proc.
time
[µs]

Description

=

=N

L
A,O..
.

PP00.00

PP00.00

PP00.00
PP00.00

11

11

9
13

8

8

6
10

42

42

6
10

Activate pulse at
positive edge
(0/1)
Activate pulse at
negative edge
(0/1)
Load pulse
Link pulse

=

=

L
A,O..
LD

=TH

PT00.00:1000*1s:E 1)

PT00.00:BM00.00*1s:E 1)

PT00.00
PT00.00
PT00.00

PT00.00

16

34

9
13
15

26

8

26

6
10
12

23

32

~60

6
10

12.5

22

Start timer with
const. preset value
Start timer with
variable preset
value
(BM00.00+01)
Load timer output
Link timer output
Load current timer
value
Halt timer (without
clearing it)

= C00.00:10000:V 1) 14 6 35 Start counter with
const. preset value

= C00.00:BM00.00:V 1) 32 24 ~60 Start counter with
var. preset value
(BM00.00+01)

Software

63

No. of bytes
with w/o

Com-
mand

Operand

Interm. code

Proc.
time
[µs]

Description

L C00.00 9 6 6 Load counter out-
put (count at preset
value)

A,
O...

C00.00 13 10 10 Link counter output

LD C00.00 15 12 12.5 Read current coun-
ter value

=C C00.00 9 6 25 Assign pulse signal
1) Adding “R” to the operand declaration makes the current timer or

counter value remanent (à 3.10.4).
Example: “ = PT00.00:1000:1s:E:R“

Please also read the explanatory notes on the next page.

Software

64

Notes on programmable pulses, timers and coun-
ters
These are more or less special forms of the commands de-
scribed earlier. For a more detailed description refer to
chapter “6 Examples“.
Ø Programmable pulse
When a wipe pulse has been set (=, =N...) and the corre-
sponding code line is skipped, the output signal will be re-
tained until the line is processed again.
Ø Remanence
The “R” operand supplements listed in the table are optio-
nal parameters. Add them if you wish a timer or counter to
be remanent (when you stop or reset the controller, the cur-
rent (time) count will be stored and retrieved when you re-
start the controller).
Ø Timers
Once started, timers run regardless of whether the corre-
sponding code line is being processed or not.

Software

65

4.5 Programming modules
The user program of Eco Control 667E is structured by
modules. This helps you to break up the technological pro-
blem to be controlled into separate part tasks. The modules
form a hierarchical system (at max. 5 levels) that allows
modules at higher levels to call modules at lower ones. A
program of this structure is very clear and helps a lot with
understanding or updating of finished programs. The fol-
lowing types of modules are available:
Ø organisation module
Ø program modules
Ø KUBES modules
Processing of individual modules is monitored by a
watchdog which is triggered every time a module is called.
After that the system has 70 ms to process the module.
Program and KUBES modules are subroutines. The return to
the calling module is ensured by the module organisation
and must not be programmed separately. Modules must
not call themselves.
The maximum length of a module is 128 instructions. To
these you may add extra comment lines so that the maxi-
mum number of lines is 253.

Software

66

4.5.1 Organisation module
Function: organises the other modules
Name: ORG
Quantity: 1

It is practical if the ORG module contains the program se-
lection and calls of the modules that are relevant to the
overall task. All PLC instructions can be used without limita-
tion.

4.5.2 Program module
Function: PLC program module for a separate part task.

Organises the next module level.
Name: Optional
Quantity: Max. 255

4.5.3 KUBES module
Function: Library module for the solution of a specific,

defined basic task. KUBES modules are pro-
grammed by Kuhnke in a high-level language
and added as code to a library.

Name: Set
Quantity: Max. 255

Software

67

4.5.4 Module hierarchy

Notes on the illustration
Ø Hierarchy levels
The example above uses all of the 5 available hiearchy
levels by linking
ORG à PRO 2 à PRO 3 à PRO 4 à PRO 5
Ø Terminating modules
KUBES modules (here: KUB 1) are terminating modules. No
other modules can be called from there.

ORG PRO
1

PRO
2

PRO
3

PRO
4

PRO
5

KUB
1

Fig. 10: Module hierarchy, example

Software

68

KUBES modules

69

5 KUBES modules
KUBES modules are subroutines translated into machine
code. Their job is to solve compley tasks that program mo-
dules written by the user can solve only with difficulties or
not at all.

Reserved operands
The KUBES modules of Eco Control 667E accept no para-
meters. Data is exchanged via reserved operands (à
4.2.3) which must not be assigned to any other addresses
by the user program if the relevant KUBES modules are
being used.

Standard modules
A set of standard KUBES modules is automatically installed
together with KUBES.

Special modules
There is the option of delivering customised software soluti-
ons in the shape of KUBES modules. They are delivered
separately and installed in the PC by means of BIBS, the
library service program (part of the KUBES software
package).
Feel free to contact us if and when required.

KUBES modules

70

5.1 KUBES module libraries
KBUES modules are combined in libraries which are stored
in the KUBES program root created when installing KUBES.

Hard disk arrangement of KUBES

Fig. 11: Hard disk arrangement of KUBES

The KUBES module library is called:
Ø KULIB667.LIB
Other libraries are available. They apply to Kuhnke’s other
controllers which we do not want to discuss at this point.
KUBES automatically chooses the correct library for the
project work. You are obliged to specify the type of con-
troller when you open a new project. KUBES uses this in-
formation for library selection.
The type of controller to be chosen for Eco Control 667E is
“667“.

KUBESEXE

KUBES Project 1

Project 2

.

.

.

Project n

KUBIB KUBES

Folder 2

.

.

.

Folder n

Program root inc.
KUBES module libraries

Main project directory

Project directories

Module library

Library folder

KUBES modules

71

5.1.1 Contents of the KUBES module library
Library “KULIB667.LIB“ not only applies to Eco Control
667E as described in this manual but also to the older ty-
pes, Pico Control 667 and Compact Control 667.
Please note that some modules in the library can be used
for the last two devices only, because they can be configu-
red with an additional module if and when required.
The table lists the available modules in alphabetical order:

KUBES module Used in Eco Control 667E Function

CNT_ENC
CNT_EVENT

no Counter functions for the
add. “counter” module

RD_OFFS Read with offset

SST667IN V.24 communication:
send strings

V24667IE V.24 communication:
receive individual char.s

V24667IS

yes

V.24 communication:
send individual char.s

V24667ST
V24667XE

V24667XS

no Communication via addi-
tional “V.24” module

WR_OFFS yes Write with offset

The library can be viewed in KUBES:
Ø Module Editor
Ø Open “Module” menu
Ø Choose “KUBES modules”

KUBES modules

72

5.1.2 Loading KUBES modules
The required KUBES module is started by a jump command
at the appropriate place in the user program (organisation
or program module):
Ø JPK <module name>

Absolute jump. It is taken every time the microprocessor
reads the program line. The module is not called if a jump
skips the program line.
or
Ø JPCK <module name>

Conditional jump. It is only taken if the preceding operati-
on results in “logical 1”. The module is not called if a jump
skips the program line.

KUBES modules

73

5.2 Communication modules
Communication modules allow you to use the program-
ming interface for simle data traffic.
There are three KUBES modules available for this task:
Ø V24667IS
Sends single characters
Ø V24667IE
Receives single characters
Ø V24667IN
Sends strings (data ranges)
The data transfer format is set and cannot be changed:
Ø 8 data bits
Ø 1 stop bit
Ø no parity check
Ø 1200 bit/s

KUBES modules

74

5.2.1 Reserved operands
Suggested
symbol

Address Used by
KUBES mod.

Value 1) Function

INIT_V24 FBM01.00 K:255 V24 mode settings ok
RES_1 FBM01.01 K:<n> Internally used marker
KUBES FBM01.02

V24667IS,
V24667IE,
V24667IN

U:255
U:0

V24 mode:
Programming/KUBES prot.
Communicating

FBM01.03 V24667IS U:<Chr> Char. to be sent
FBM01.04 V24667IS,

V24667IN
U:255
K: 0

Start transfer
Acknowledge

REC_CHR FBM01.05 K:<Chr> Char. to be received
FBM01.06

V24667IE
K:255
U:0

Character received
Acknowledge

FBM01.07 K:<n> Internal counter of bytes sent
FBM01.08 U:<n> Qty. of data bytes (1...230)

SDATA FBM01.09
 to
FBM15.15

V24667IN

U:<Dat> Data field to be sent

1) K: KUBES module writes
 U: user writest

These operands are reserved for the described functions.
They must not be used for any other purposes if the rele-
vant KUBES modules are embedded in the program.

KUBES modules

75

5.2.2 V.24 mode settings
Reserved operand “FBM01.02” enables communication.
This operand’s status decides whether the KUBES protocol
in programming mode (also supporting communication
with suitable dialogue terminals, for example) or the com-
munication mode is activated:
Operand Status V.24 mode

255 Programming (KUBES protocol)FBM01.02
0 Communicating by means of the

KUBES modules described below

To switch over to communication mode please make sure
to use an external input as suggested in the example pro-
gram below (à 5.2.6). Failure to comply may permanent-
ly disable the programming mode.

The chosen mode becomes active as soon as at least one
of the KUBES modules has been run.
Ø The KUBES module acknowledges the change of set-
tings:
[FBM01.00] ç 255
Clear operand (FBM01.00) at the start of the program
because it is undefined when you switch on the controller.

Example program (à 5.2.6) lines 3...26

KUBES modules

76

5.2.3 Sending single characters (V24667IS)
KUBES module: V24667IS
Length: 66 byte
Processing time: c. 50 µs
Function: send single character

5.2.3.1 Program structure

1. User chooses V.24 mode (à5.2.2)
2. User verifies that no character is being sent

[FBM01.04] è 0 ?
3. User specifies the character to be sent

[FBM01.03] ç <character to be sent>
4. User starts data transfer

[FBM01.04] ç 255
5. KUBES module acknowledges when transfer is done

[FBM01.04] ç 0
Step 1 only needs to be taken once to enable communica-
tion. It is the same for sending and receiving data.
Afterwards, steps 2...5 can be taken any number of times,
also alternating with receiving actions.

Example program (à 5.2.6) lines 34...50

KUBES modules

77

5.2.4 Receiving single characters (V24667IE)
KUBES modules: V24667IE
Length: 106 byte
Processing time: c. 90 µs
Function: receive single character

5.2.4.1 Program structure

1. User chooses V.24 mode(à5.2.2)
2. User checks whether a character was received

[FBM01.06] è 255 ?
3. User reads the character received

[FBM01.05] è <character received>
4. User acknowledges reception

[FBM01.06] ç 0
Step 1 only needs to be taken once to enable communica-
tion. It is the same for sending and receiving data.
Afterwards, steps 2...4 can be taken any number of times,
also alternating with sending actions.

Example program (à 5.2.6) lines 75...83

KUBES modules

78

5.2.5 Sending strings (SST667IN)
KUBES module: SST667IN
Length: 104 byte
Processing time: c. 60 µs
Function: send strings (of characters)

5.2.5.1 Program structure

1. User chooses V.24 mode (à5.2.2)
2. User verifies that no strings are being sent

[FBM01.04] è 0 ?
3. User writes the data to be sent into the data field

[FBM01.09 ff] ç <data bytes to be sent>
4. User specifies the quantity of data bytes

[FBM01.08] ç <quantity of data bytes to be sent)
5. User starts transfer

[FBM01.04] ç 255
6. KUBES module acknowledges when transfer is done

[FBM01.04] ç 0
Step 1 only needs to be taken once to enable communica-
tion. It is the same for sending and receiving data.
Afterwards, steps 2...6 can be taken any number of times,
also alternating with receiving single characters.

Example program (à 5.2.6) lines 52...73

KUBES modules

79

5.2.6 Example program “serial communication“
This program uses all KUBES modules available for serial
communication.

======== KUBES ===

 Project structure

Project : 667_COMM Network :

 created : Aug 19 1998 10:03

User : changed : Aug 19 1998 16:39

Comment: 667E: Data communication via V.24

==

ORG.ORG/1

|

*------>SST667IN.KNK/6

|

*------>V24667IE.KNK/9

|

*------>V24667IS.KNK/10

KUBES modules

80

======== KUBES ===

 Organisation module IL

Project : 667_COMM Network :

Module : ORG No.: 1 created : Aug 19 1998 10:03

User : changed : Aug 19 1998 16:41

==

 1: ; ------------- Data communication test program -----------------

 2:

 3: ; Enable V.24 mode

 4: ; ================

 5: ; Clear operand FBM01.00 first (process once only)

 6: L INI_MRK M00.00 ; (initialisation marker)

 7: JPC MODE_SEL

 8: L 0

 9: = V24_OK FBM01.00 ; (255 = V24 mode enabled)

 10: L PL00.01

 11: = INI_MRK M00.00 ; (initialisation marker)

 12: JP END_COM

 13: ; Choose mode (process cyclically)

 14: MODE_SEL L V24_MODE I00.00 ; (0=programming, 1=communic.)

 15: JPCN PROG

 16: COMM L 0 ; communication mode

 17: = KUBES FBM01.02 ; (255 =programming, 0=communic.)

 18: JP RUN_V24

 19: PROG L 255 ; programming mode

 20: = KUBES FBM01.02 ; (255 =programming, 0=communic.)

 21: ; Start KUBES module "send single character"

 22: RUN_V24 JPK V24667IE ; single character received

 23: ; Mode enabled?

 24: L V24_OK FBM01.00 ; (255 = V24 mode enabled)

 25: CMP 255

 26: JP<> END_COM ; no -> jump

 27:

 28: ; Send single characters or strings?

 29: ; ==================================

 30: SND_MOD L SND_MODE I00.01 ; (0=single char., 1=strings)

 31: JPCN S_SINGLE ; send single character

 32: JPC S_STRING ; module: send strings

 33:

KUBES modules

81

 34: ; Send single characters

 35: ; ======================

 36: ; Specify transfer interval (every second)

 37: S_SINGLE L T00.02 ; current value

 38: CMP SBM00.00 ; old value

 39: JP= REC ; second not passed yet

 40: = SBM00.00 ; store new value

 41: ; Send

 42: SEND JPK V24667IS ; KUBES module

 43: L SND_RUN FBM01.04 ; (255 =start transfer, 0=ackn.)

 44: JPC END_SNGL ; still sending

 45: L PC00.02 ; clock gen. value as s_char.

 46: = SND_CHR FBM01.03 ; (character to be sent)

 47: C8T1 O00.08 ; show SND_CHR at outputs

 48: L 255

 49: = SND_RUN FBM01.04 ; (255 =start transfer, 0=ackn.)

 50: END_SNGL JP REC

 51:

 52: ; Send strings

 53: ; ============

 54: ; Specify data to be sent (here: "<STX>PLC<ETX>")

 55: S_STRING JPK SST667IN ; KUBES module

 56: L $02 ; STX (Start of Text)

 57: = SDATA FBM01.09 ; (start of s_data field)

 58: L 'S'

 59: = FBM01_10 FBM01.10 ; (data to be sent)

 60: L 'P'

 61: = FBM01_11 FBM01.11 ; (data to be sent)

 62: L 'S'

 63: = FBM01_12 FBM01.12 ; (data to be sent)

 64: L $03 ; ETX (End of Text)

 65: = FBM01_13 FBM01.13 ; (data to be sent)

 66: LENGTH L 5 ; length of data to be sent

 67: = SDAT_LEN FBM01.08 ; (qty. of s_data bytes)

 68: ; Send

 69: SEND_STR L SND_RUN FBM01.04 ; (255 =start transfer, 0=ackn.)

 70: JPC END_STRG ; still sending

 71: L 255

 72: = SND_RUN FBM01.04 ; (255 =start transfer, 0=ackn.)

 73: END_STRG NOP

 74:

KUBES modules

82

 75: ; Receive single character

 76: ; ========================

 77: REC L REC_RUN FBM01.06 ; (255 =receive char., 0=ackn.)

 78: CMP 255

 79: JP<> END_REC

 80: L REC_CHR FBM01.05 ; (received character)

 81: C8T1 A00.00 ; show REC_CHR at outputs

 82: CLR REC_RUN FBM01.06 ; (255 =char. received, 0=ackn.)

 83: END_REC NOP

 84:

 85:

 86: ; End of communication program

 87: ; ============================

 88: END_COM NOP

KUBES modules

83

5.3 Copying data (blocks)
The two KUBES modules described next serve the following
purposes:
Ø KUBES module “RD_OFFS“
reads a specified operand range
Ø KUBES module “WR_OFFS“
writes into a specified operand range
Ø both KUBES modules
copy data from one operand range to another
The operand range is accessed via its intermediate code
address (à 5.3.2). You can add an offset to address 1 (or
two in the case of word operands) particular operand in
the range.

5.3.1 Reserved operands
Suggested
symbol

Address Used by KUBES
module

Function

WR_SRC BM00.00...01 WR_OFFS Data source (2 byte)
RD_DEST BM00.02...03 RD_OFFS Data destination (2 byte)

OFFSET BM01.00 RD_OFFS and
WR_OFFS

Pointer (offset) to an address in
the operand range

ADDRESS FBM00.00...01 RD_OFFS
WR_OFFS

First address of the operand
range

These operands are reserved for the described functions.
They must not be used for any other purposes if the rele-
vant KUBES modules are embedded in the program.

KUBES modules

84

5.3.2 Operands’ intermediate code addresses
The operands can only be accessed directly if the normal
mnemonic (M00.00, SBM03.15...) is used.
Internal markers can only be accessed indirectly by means
of their intermediate code addresses:

Operand range Intermediate code
address

(hexadecimal)
Start End Start End

R00.00 R15.15 $0100 $01FF
BM00.00 BM15.15 $0200 $02FF
SBM00.00 SBM15.15 $0300 $03FF

BR00.00 BR15.15 $0400 $04FF
SBR00.00 SBR15.15 $0500 $05FF

- - $0600 $06FF

ABM00.00 ABM15.15 $0700 $07FF
FM00.00 FM15.15 $0800 $08FF

- - $0900 $09FF

SR00.00 SR15.15 $0A00 $0AFF
BC00.00 BC15.15 $0B00 $0BFF
SBC00.00 SBC15.15 $0C00 $0CFF

BD00.00 BD15.15 $0D00 $0DFF
SBD00.00 SBD15.15 $0E00 $0EFF
LBM00.00 LBM15.15 $0F00 $0FFF

KUBES modules

85

5.3.3 Reading data (RD_OFFS)
KUBES module: RD_OFFS
Length: 58 byte
Processing time: c. 89 µs
Function: read operand data

5.3.3.1 Program structure

Ø Specify the first address of the source operand range
for reading
[FBM00.00...01] ç <intermediate code address>
Ø Set the offset of an address in the range (0 = first)
[BM01.00] ç <offset>
Ø Start KUBES module RD_OFFS
Ø Evaluate 1 or 2 byte of data
[BM00.02...03] è <evaluation>
Example program (à 5.3.5)

First address Operand range

 Offset:

FBM00.00...01

BM01.00

0
1
2
3
4

.

.

.
n

0+Offset
0+Offset+1

BM00.02
BM00.03

Data

Fig. 12: KUBES module "RD_OFFS"

KUBES modules

86

5.3.4 Writing data (WR_OFFS)
KUBES module: WR_OFFS
Length: 74 byte
Processing time: c. 33 µs
Function: write data into operand

5.3.4.1 Program structure

Ø Provide 1 or 2 byte of data
[BM00.00...01] ç <data>
Ø Specify the first address of the target operand range
for writing
[FBM00.00...01] ç <intermediate code address>
Ø Set the offset of an address in the range (0 = first)
[BM01.00] ç <offset>
Ø Start KUBES module WR_OFFS
Example program (à 5.3.5)

Operand range First address

 Offset

0
1
2
3
4

.

.

.
n

FBM00.00...01

0+Offset
0+Offset+1

BM00.00
BM00.01

Data

BM01.00

Fig. 13: KUBES module "WR_OFFS"

KUBES modules

87

5.3.5 Example program “copy data block“
This program is to copy 16 byte of data. The source and
target ranges are very near each other so that the program
can be easily tested by means of KUBES’ Address Range
display function:

Data ranges First address
(interm. code)

Source SBM00.00...SBM00.15 $0300
Target SBM01.00...SBM01.15 $0310

We took the first intermediate code address of every range
from the table in chapter (à 5.3.2).
Proceed as follows:
Ø Write and transmit program (see next page)
Ø Start controller (RUN)
Ø Display Address Range, choose “byte markers SBM“

Ø Set and reset input I00.00.
After a short while you will find the data in SBM01.00...15
and SBM00.00...15 are identical (see screen dump).

KUBES modules

88

======== KUBES ===

 Project structure

Project : 667_COPY Network :

 created : Aug 17 1995 11:28

User : changed : Aug 17 1998 09:59

Comment: 667E: Copy data block

==

ORG.ORG/1

|

*------>RD_OFFS.KNK/3

|

*------>WR_OFFS.KNK/4

|

*------>DAT_SET.PRO/1

KUBES modules

89

======== KUBES ===

 Organisation module IL

Project : 667_COPY Network :

Module : ORG No.: 1 created : Aug 17 1995 11:28

User : changed : Aug 17 1998 08:47

==

 1: ; ------------------ Test program "Copy data blocks" -----------------

 3: ; To be able to easily repeat the test, the provided data is modified

 4: ; by a randomizer via I00.00 (see module "DAT_SET").

 6:

 7: ; Jump to "Provide data"

 8: ; ----------------------

 9: L SET_DAT I00.00 ; (set data)

 10: JPCP DAT_SET 1

 11:

 12: ; First steps

 13: ; -----------

 14: ; Clear offset memory to be on the safe side

 15: CLR OFFSET BM01.00 ; (points to oper. in data field)

 16:

 17: ; Specify length of data fields (here: BM01.01 chosen)

 18: L 16 ; 16 byte

 19: = DAT_LEN BM01.01 ; (length of data fields)

 20:

 21: ; Program for copying (designed as a loop)

 22: ; --

 23: LOOP NOP

 24: ; Specify start of source memory (SBM00.00)

 25: SOURCE LD $0300 ; interm. code of 1st source addr.

 26: =D ADDR_1 FBM00.00 ; (1st addr. of operand range)

 27: JPK RD_OFFS ; source data to BM00.02...03

 28: ; Transfer data

 29: LD DATA_RD BM00.02 ; (data from source memory, byte)

 30: =D DATA_WR BM00.00 ; (data to target memory, byte 1)

 31: ; Specify start of target memory (SBM01.00)

 32: DEST LD $0310 ; interm. code of 1st target addr.

 33: =D ADDR_1 FBM00.00 ; (1st addr. of operand range)

 34: JPK WR_OFFS ; data from BM00.00...03 to target

 35: ; Increment offset (twice because your’re copying by word

 36: INCOFFS INC OFFSET BM01.00 ; (pointer to oper. in data field)

 37: INC OFFSET BM01.00 ; (pointer to oper. in data field)

 38: ; Complete range copied?

 39: L OFFSET BM01.00 ; (pointer to oper. in data field)

 40: CMP DAT_LEN BM01.01 ; (length of data fields)

 41: JP< LOOP ; no -> get next set of data

 42: END_COPY NOP

KUBES modules

90

======== KUBES ===

 Program module IL

Project : 667_COPY Network :

Module : DAT_SET No.: 1 created : Aug 14 1998 16:47

User : changed : Aug 19 1998 09:37

Comment: Provide data

==

 1: ; A kind of randomizer writes the contents of the internal clock pulse

 2: ; generators into byte markers SBM00.00...15 while the module is running

 3: ; ---

 4: L PC00.00

 5: = SBM00.00

 6: L PC00.01

 7: = SBM00.01

 8: L PC00.02

 9: = SBM00.02

 10: L PC00.03

 11: = SBM00.03

 12: L PC00.00

 13: = SBM00.04

 14: L PC00.01

 15: = SBM00.05

 16: L PC00.02

 17: = SBM00.06

 18: L PC00.03

 19: = SBM00.07

 20: L PC00.00

 21: = SBM00.08

 22: L PC00.01

 23: = SBM00.09

 24: L PC00.02

 25: = SBM00.10

 26: L PC00.03

 27: = SBM00.11

 28: L PC00.00

 29: = SBM00.12

 30: L PC00.01

 31: = SBM00.13

 32: L PC00.02

 33: = SBM00.14

 34: L PC00.03

 35: = SBM00.15

 36:

Examples

91

6 Examples

6.1 Basic functions

6.1.1 AND
Wiring diagram Logic diagram Instruction list

L I00.00
A I00.01
= O00.0

0

6.1.2 OR
Wiring diagram Logic diagram Instruction list

L I00.02
O I00.03
= O00.01

Examples

92

6.1.3 Negated input
Wiring diagram Logic diagram Instruction list

LN I00.04
= O00.02

6.1.4 Negated output

Wiring diagram Logic diagram Instruction list

L I00.05
=N O00.03

Examples

93

6.1.5 NAND

Wiring diagram Logic diagram Instruction list

L I00.06
A I00.07

=N O00.04

6.1.6 NOR

Wiring diagram Logic diagram Instruction list

L I00.08
O I00.09
=N O00.05

Examples

94

6.1.7 XO: exclusive OR (antivalence)

Wiring diagram Logic diagram Instruction list

L I00.10
XO I00.11
= O00.06

6.1.8 XON: exclusive NOR (equivalence)

Wiring diagram Logic diagram Instruction list

L I00.12
XON I00.13

= O00.07

Examples

95

6.1.9 Seal-in circuit

Wiring diagram Logic diagram Instruction list

L I00.14
O O00.08
AN I00.15
= O00.08

Examples

96

6.2 Memory functions

6.2.1 Mainly resetting

Logic diagram Instruction list

L I00.00
S O00.09
L I00.01
R O00.09

6.2.2 Mainly setting

Logic diagram Instruction list

L I00.03
R O00.10
L I00.02
S O00.10

Examples

97

6.3 Switching circuits

6.3.1 OR-AND circuit

Wiring diagram Logic diagram Instruction list

L I00.04
ON I00.05
A I00.06
= O00.11

6.3.2 Parallel circuit to output

Wiring diagram Logic diagram Instruction list

LN I00.07
A I00.13
= O00.12
A I00.14
= O00.13

Examples

98

6.3.3 Network with one output

Wiring diagram Logic diagram Instruction list

L I00.15
ON I00.00
A I00.01
O O00.14
AN I00.02
= O00.14

Examples

99

6.3.4 Network with outputs and markers
Wiring diagram

Logic diagram Instruction list
L I00.12
O M00.02

AN I00.13
AN I00.14
= M00.02
L I00.15
O M00.03

AN M00.02
AN I00.14
= M00.03
L M00.02

AN I00.00
= O00.04
LN M00.02
A M00.03
= O00.05

Examples

100

6.4 Special markers used as AND/OR marker

6.4.1 Network with OR marker

Wiring diagram Logic diagram

Instruction list
Note: In this example, a part result

L I00.01 is to be briefly stored.
A I00.02
= SM15.15
L I00.03 Definition: Always use special marker
A I00.04 SM15.15 because it can be
O SM15.15 used again in other networks.
= O00.06

OR marker = SM 15.15

Examples

101

6.4.2 Network with AND marker

Wiring diagram Logic diagram

Instruction list
Note:

L I00.05
O I00.06
= SM15.14
L I00.07

In this example, too, a result is
to be stored briefly in a special
marker which is AND connec-
ted.

O I00.08 Definition:
A SM15.14
= O00.07

Always use special marker
SM15.14 as AND marker.

AND marker = SM 15.14

Examples

102

6.4.3 Network with multiple use of the OR marker
Wiring diagram Logic diagram

Instruction list
L I00.00
A I00.01
= SM15.15 ;OR marker
L I00.02
A I00.03
O SM15.15
= SM15.14 ;AND marker
L I00.04
A I00.05
= SM15.15 ;OR marker
L I00.06
A I00.07
O SM15.15
A SM15.14
= O00.09

Examples

103

6.5 Circuit conversion
Wiring diagram before Wiring diagram after

Instruction list before Instruction list after

L I00.00 L I00.03
A I00.01 A I00.04
= SM15.14 O I00.02
L I00.02 A I00.00
= SM15.15 A I00.01
L I00.03 = O00.12
A I00.04
O SM15.15
A SM15.14
= O00.12
Circuit conversion leads to another sequence of instructions. This facilitates
program creation because you can do without some of the markers for part
results.
The length of the program is considerably reduced.

Examples

104

6.6 Special-purpose circuits

6.6.1 Impulse relay

Wiring diagram

Instruction list

L I00.00
= PP00.00
L PP00.00

XO O00.00
= O00.00

Examples

105

6.6.2 Reversing circuit (reversing starter) with
forced stop

Wiring diagram

Instruction list
L I00.01 :right push-button
O O00.00 :right contactor

AN O00.01 :left contactor
AN I00.00 :Stop push-button*)
= O00.00 :right contactor

L I00.00 :left push-button
O O00.01 :left contactor

AN O00.00 :right contactor
AN I00.00 :Stop push-button*)
= O00.01 :left contactor

Notes:
We recommend that you provide a contactor interlock outside the PLC
because switching between outputs is very fast.
*) Type A (AND) at this point if an n.c. Stop button has been connec-
ted outside the controller for safety reasons.

Examples

106

6.6.3 Reversing circuit (reversing starter) without
forced stop

Wiring diagram

Instruction list
L I00.01 ; right push-button
O O00.00 ; right contactor

AN I00.02 ; left push-button
AN O00.01 ; left contactor
AN I00.00 ; Stop push-button*)
= O00.00 ; right contactor

L I00.02 ; left push-button
O O00.01 ; left contactor

AN I00.01 ; right push-button
AN O00.00 ; right contactor
AN I00.00 ; Stop push-button*)
= O00.01 ; left contactor

Notes: We recommend that you provide a contactor interlock outside the
PLC because switching between outputs is very fast.
*) Type A (AND) at this point if an n.c. Stop button has been connected out-
side the controller for safety reasons.

Examples

107

6.7 Edge evaluation (wiping pulse)

ECO Control 667E has 128 programmable wiping pulses for the detection
of status changes of logical signals (edge evaluation). The pulses can be
used for both rising and falling edges.

6.7.1 Programmable wiping pulse at rising edge

Wiring diagram Circuit symbol Instruction list

L I00.00
= PP00.00
L PP00.00
= O00.00

Signal curve

T = cycle time

Examples

108

6.7.2 Programmable wiping pulse at falling edge

Wiring diagram Circuit symbol Instruction list

L I00.01
=N PP00.01
L PP00.01
= O00.01

Signal curve

T = cycle time

As opposed to the programmable wiping pulses of the previous examples,
which were activated by a change of edge, the next two examples evalua-
te the signal state. This influences the start-up behaviour.

Examples

109

6.7.3 Wiping pulse at positive signal

Wiring diagram Circuit symbol Instruction list

L I00.02
AN M00.00
= O00.02
L I00.02

Signal curve

= M00.00

Examples

110

6.7.4 Wiping pulse at negative signal

Wiring diagram Circuit symbol Instruction list

LN I00.03
AN M00.01
= O00.03
LN I00.03

Signal curve

= M00.01

Examples

111

6.8 Software timers

6.8.1 Mnemonics
You can program up to 32 software timers in the range between 10 ms and
65535 s. Timer addresses are PT00.00 – PT01.15.

Start timer
Assignment Address :Time value *Time basis :Function :Remanence *)

:R remanence

:R raising delay
:F falling delay
:P impulse
:C clock pulse

10 ms (or *100 ms, or *1s

16 bit constant (1 – 65535) or
16 bit variable (e.g. BM01.02 (+BM01.03

Address of software timer (e.g. PT01.05)

= Start of software timer at edge 0 → 1, RESET at log. 0

*) Note: Adding the “R” parameter (remanence of current timer
value) is optional.

• Read output L PTxx.xx “1“= time run out

• Read current value
(remaining time)

LD PTxx.xx 16 bit value of remaining
time

• Stop timer =TH PTxx.xx stop without RESET

Examples

112

6.8.1.1 Syntax examples

Start raising delay of 17.5 s with remanent current value:

= PT01.00:175*100ms:R:R

Start falling delay with variable timer value (timer value in BM06.02/03):

= PT01.01:BM04.06*100ms:F

Read timer value and store in BM06.02/03:

LD PT01.02
=D BM06.02

Stop timer while I01.00 is on:

L I01.00
=TH PT01.03

Examples

113

6.8.2 Impulse at start-up

Wiring diagram Circuit symbol Instruction list

L I00.01
= PT00.01:135*10ms:P
L PT00.01
= O00.01

Signal curve

 T = set time (here: 1.35s)

Examples

114

6.8.3 Impulse of constant duration

Wiring diagram Circuit symbol Instruction list

L I00.02
O PT01.02
= PT01.02:123*100ms:P
L PT01.02

Signal curve

= O00.02

T = set time (here: 12.3s)

Examples

115

6.8.4 Raising delay

Circuit symbol Instruction list

L I00.03
= PT00.03:185*10ms:R
L PT00.03

Signal curve

= O00.03

T = set time (here: 1.85s)

Examples

116

6.8.5 Falling delay

Circuit symbol Instruction list

L I00.04
= PT01.04:35*100ms:F
L PT01.04

Signal curve

= O00.04

T = set time (here: 3.5s)

Examples

117

6.8.6 Pulse generator with wiping pulse output

Circuit symbol Instruction list

L I00.05
AN O00.05
= PT00.00:55*10ms:R
L PT00.05

Signal curve

= O00.05

T1 = set time (here: 0.55s)
 T2 = cycle time

Examples

118

6.8.7 Flash generator with one timer

Circuit symbol Instruction list

L I00.06
= PT01.06:50*10ms:C
L PT01.06

Signal curve

= O00.06

T = set time (here: 0.5s), flashing frequency = 1Hz

Examples

119

6.8.8 Flash generator with two timers

Circuit symbol Instruction list

L I00.00
AN PT00.02
= PT00.01:5*100ms:P
L PT00.01
= O00.00
LN PT00.01

Signal curve

= PT00.02:10*100ms:P

T1 = set switch-on time (here: 500ms=0.5s)
 T2 = set switch-off time (here 1000ms=1s)

Examples

120

6.9 Programmable clock
Apart from the software timers there are also four 8-bit operands available
which are incremented at set clock pulses.
Operand addresses are PC00.00-PC00.03:
Operand Clock pulse Range

10 ms
PC00.01
PC00.02

10 s
0...255

The pulse markers are incremented by 1 in the range from 0 to 255 at the
specified clock pulse. When the count reaches 255, the next clock cycle sets
the operand back to 0.

Application example
One part of the program is to be processed only every 100 ms.

L PC00.01 ;if 100 ms clock pulse memory is
CMP BM03.14 ;the same as the old value?
JP= ;go to end of program 1 if yes
= BM03.14 ;else new = old
″
″

″ ;this part of the program is processed
″ ;only every 100 ms
″
″
″
LN O01.03 ;program for 100 ms flash generator
= O01.03
″
″
″
″

L PCxx.xx
=

changes the bit marker’s logical state every (128*clock pulse time) becau-
se the status of bit 7 in the accumulator is used for bit processing.

Examples

121

6.10 Software counters

6.10.1 Mnemonics

You can program up to 32 software counters in the range from 1 to 65535.
Counter addresses are C00.00-C01.15.

Assignment Address :Counter val. :Function :Remanence *)
:R remanence

:F count up
:B count down

16 bit constant (1 – 65535) or
16 bit variable (e.g. BM01.02 (+BM01.03))

Address of software counter (e.g. C00.05)

= Starts the software counter at edge 0 → 1, RESET at log. 0

*) Note: Adding the “R” parameter (remanence of current counter
value) is optional.

ààRead output L Cxx.xx “1“= count complete

ààRead current value
(remaining value)

LD Cxx.xx 16 bit value of the cur-
rent count

àà Count (transfer pulse) L stop without RESET

Examples

122

6.10.1.1 Syntax examples

Start forward counter to 175 with remanent current value:
= C00.00:175:F:R

Start down-counter with non-remanent, variable counter value (the set value
is stored in BM04.06/ BM04.07)

= C00.03:BM04.06:B

Transfer counting pulse (count)
L I02.03 ;pulse
=C C00.03

Read counter output (set count complete?)
L C01.00

Read count:
LD C01.00

6.10.2 Up-counter to 12

L I00.00 ;start counter
= C00.00:12:V
L I00.01 ;counter (transfer pulse)
=C C00.00
L C00.00 ;read “count complete“
= O00.12
LD C00.00 ;read current value
=D BM00.00

Examples

123

6.11 Programming a sequential process

Path-step diagram

A+ B+ A- A+ A-
C+ B- C-

Examples

124

Start I00.00 L I00.00 ;start
a0 I00.01 A I00.01 ;limit switch a0
b0 I00.03 A I00.03 ;limit switch b0
c0 I00.05 A I00.05 ;limit switch c0

AN SM00.01 ;step 1
1 S SM00.01 ;step 1

SM00.01 S O00.00 CYL.A+ S O00.00 ;cylinder A+
a1 I00.02

L I00.02 ;limit switch a1
2 A SM00.01 ;step 1

SM00.02 S O00.01 CYL.B+ AN SM00.02 ;step 2
b1 I00.04 S SM00.02 ;step 2

S O00.01 ;cylinder A+
3

SM00.03 R O00.00 CYL.A- L I00.04 ;limit switch b1
S O00.02 CYL.C+ A SM00.02 ;step 2

a0 I00.01 AN SM00.03 ;step 3
c0 I00.06 S SM00.03 ;step 3

R O00.00 ;cylinder A-
4 S O00.02 ;cylinder C+

SM00.04 S O00.00 CYL.A+
R O00.01 CYL.B- L I00.01 ;limit switch a0

a1 I00.02 A I00.06 ;limit switch c1
b0 I00.03 A SM00.03 ;step 3

AN SM00.04 ;step 4
5 S SM00.04 ;step 4

SM00.05 R O00.00 CYL.A- S O00.00 ;cylinder A+
R O00.02 CYL.C- R O00.01 ;cylinder B-

L I00.02
A I00.03 ;limit switch b0

6 END A SM00.04
AN SM00.05 ;step 5
S SM00.05 ;step 5
R O00.00 ;cylinder A-
R O00.02 ;cylinder C-

L I00.01 ;limit switch a0
A I00.05 ;limit switch c0
A SM00.05 ;step 5
R SM00.01 ;step 1
R SM00.02 ;step 2
R SM00.03 ;step 3
R SM00.04 ;step 4
R SM00.05 ;step 5

Logic diagram Program

Examples

125

6.12 Register circuits

6.12.1 1-bit shift register
In this example, the shift register is 6 steps long. The signal input is shifted
from O00.01 to O00.06 when the shift clock pulse is comes in from I00.00.

Circuit symbol
I00.01 SI
I00.00 PC SO.1 O00.01 SI: signal input I00.01

SO.2 O00.02 PC: I00.00
: : SO.1: signal output 1 O00.01
SO.n O00.06 SO.2: signal output 2 O00.02

: :
1 bit shift SO.n: signal output n O00.06

register

Instruction list
L I00.00 ;shift clock pulse
= PP00.00 ;wiping pulse
L PP00.00 ;wiping pulse
JPCN NORM ;go to normal programif no
L O00.05 ;step 5
= O00.06 ;step 6
L O00.04 ;step 4
= O00.05 ;step 5
L O00.03 ;step 3
= O00.04 ;step 4
L O00.02 ;step 2
= O00.03 ;step 3
L O00.01 ;step 1
= O00.02 ;step 2

L I00.01 ;signal input
= O00.01 ;step 1

NORM :
: ;normal program

Examples

126

6.12.2 8-bit shift register

In this example, the shift register is 6 steps long. The set information is shifted
from BM00.00 to BM00.06 when the shift clock pulse comes in from
I00.00.

Circuit symbol
BM00.00 SI

I00.00 PC SO.1 BM00.01 SI: signal input BM00.01
SO.2 BM00.02 PC: I00.00
: : SO.1: signal output 1 BM00.01
SO.n BM00.06 SO.2: signal ouput 2 BM00.02

: :
8 bit shift SO.n: signal output n BM00.06

register

Instruction list
L I00.00 ;shift clock pulse
= PP00.00 ;wiping pulse
L PP00.00 ;wiping pulse
JPCN NORM ;go to normal program if not
L BM00.05 ;step 5
= BM00.06 ;step 6
L BM00.04 ;step 4
= BM00.05 ;step 5
L BM00.03 ;step 3
= BM00.04 ;step 4
L BM00.02 ;step 2
= BM00.03 ;step 3
L BM00.01 ;step 1
= BM00.02 ;step 2

L I00.01 ;signal input
= BM00.01 ;step 1

NORM :
: ;normal program

Examples

127

6.13 Copy commands (bit-to-byte transfer)

6.13.1 Copy eight 1-bit operands to one byte
C1T8 I00.00 load contents of I00.00-I00.07 into the accumulator
= BM00.00 copy contents of accumulator to BM00.00

7 6 5 4 3 2 1 0

I00.00 accumulator
I00.01
I00.02
I00.03
I00.04 BM00.00
I00.05
I00.06
I00.07

6.13.2 Copy one byte to eight 1-bit operands
L BM00.01 ;load contents of BM00.01 into accumulator
C8T1 O00.03 ;copy contents of accumulator to O00.03-O00.10

6.13.3 Copy sixteen 1-bit operands to two bytes
C1T16 I01.00 ;load contents of I01.00-I01.15 into accumulator
=D BM00.02 ;copy contents of accumulator to BM00.02-BM00.03

;(I01.00-I01.07 to BM00.02,
; I01.08-I01.15 to BM00.03)

Examples

128

6.13.4 Copy two byte to sixteen 1-bit operands
LD BM00.04 ;load contents of BM00.04-BM00.05 into accumulator
C16T1 O00.00 ;copy contents of accu to addresses O00.00-O00.15

;(BM00.04 to O00.00-O00.07,
; BM00.05 to O00.08-O00.15)

6.14 Comparator circuits

6.14.1 8-bit comparator
The program in this example compares the contents of two 8-bit markers. The
result (greater, smaller, or equal) is evaluated by conditional jumps (see jump
operations). In this case, O00.00 is set if reference value 1 is greater than
reference value 2.

V1: reference value 1 BM00.00
V2: reference value 2 BM00.01
CO: comparator output O00.00

BM00 00 V1
BM00.01 V2 CO O00.0 V1 > V2

comparator

Program
L BM00.00 ;compare V1
V BM00.01 ;with V2
JP> MARK1 ;jump if V1 greater than V2
L PL00.00 ;log. 0
JP MARK2 ;jump to CO

MARK1 L PL00.01 ;logical 1
MARK2 = O00.00 ;CO

Examples

129

6.14.2 16-bit comparator
The program in this example compares the contents of two 16-bit markers.
The result (greater, smaller, or equal) is evaluated by conditional jumps (see
jump operations). In this case, O00.00 is set if reference value 1 is greater
than reference value 2.

HB LB
V1: reference value 1 BM00.01 BM00.00 HB: high byte
V2: reference value 2 BM00.03 BM00.02 LB: low byte
CO: comparator output O00.00

HB LB
V1

BM00.03 BM00.02 V2 CO O00.0

8 bit
comparator

Program
LD BM00.00 ;compare V1
CMPD BM00.02 ;with V2
JP< MARK3 ;jump if V1 smaller than V2
L PL00.00 ;log. 0
JP MARK4 ;to CO

MARK3 L PL00.01 ;logical 1
MARK4 = O00.00 ;CO

Examples

130

6.15 Arithmetic functions

6.15.1 Binary 8-bit adder
Z1: 1st addend 8 bit 0-255 ($FF) BM00.00
Z2: 2nd addend 8 bit 0-255 ($FF) BM00.01
Z3: sum 8 bit 0-255 ($FF) BM00.02

Z1

BM00.01 Z2 Z3 BM00.02

Binary
8-bit
adder

Program
L BM00.00 ;Z1 1st addend
ADD BM00.01 ;Z2 2nd addend
= BM00.02 ;Z3 sum

Examples

131

6.15.2 Binary 16-bit adder
HB LB

Z1: 1st addend 16 bit 0-65535 ($FFFF) BM00.01+ BM00.00
Z2: 2nd addend 16 bit 0-65535 ($FFFF) BM00.03+ BM00.02
Z3: sum 16 bit 0-65535 ($FFFF) BM00.05+ BM00.04

HB: high byte
HB LB LB:

+ Z1
HB LB

BM00.03 + BM00.02 Z2 Z3 BM00.05 + BM00.04

Binary
16-bit
adder

Program
LD BM00.00 ;Z1 1st addend
ADDD BM00.02 ;Z2 2nd addend
=D BM00.04 ;Z3 sum

Examples

132

6.15.3 8-bit BCD adder
Z1: 1st addend 8 bit 0-99 BM00.00
Z2: 2nd addend 8 bit 0-99 BM00.01
Z3: sum 8 bit 0-99 BM00.02

BM00 00 Z1

BM00.01 Z2 Z3 BM00.02

8 bit
BCD
adder

Programm

 ****** BCD correction ***************************

CLR LBM00.01 ;marker for BCD correction
L BM00.00 ;Z1 1st addend
A 15
= LBM00.00 ;1st decade
L BM00.01 ;Z2 2nd addend
A 15 ;davon 1. Dekade
ADD LBM00.00
CMP 10 ;BCD correction required?
JP< ADDIT ;jump if not
L 6 ;if so:
= LBM00.01 ;load correction

 ****** Addition ********************************

ADDIT L LBM00.01
ADD BM00.00 ;Z1 1st addend
ADD BM00.01 ;Z2 2nd addend
= BM00.02 ;Z3 sum

Examples

133

6.15.4 Binary 8-bit subtractor
Caution: Z3 becomes negative and is filed as two’s complement if Z2 > Z1.
Further evaluation of Z3 has to take this into account.

Z1: minuend 8 bit 0-255 ($FF) BM00.00
Z2: subtrahend 8 bit 0-255 ($FF) BM00.01
Z3: difference 8 bit 0-255 ($FF) BM00.02

Z1

BM00.01 Z2 Z3 BM00.02

Binary

subtractor

Programm
L BM00.00 ;Z1 minuend
SUB BM00.02 ;Z2 Ssbtrahend
= BM00.04 ;Z3 difference

Examples

134

6.15.5 Binary 16-bit subtractor
HB LB

Z1: minuend 16 bit 0-65535 ($FFFF) BM00.01+ BM00.00
Z2: subtrahend 16 bit 0-65535 ($FFFF) BM00.03+ BM00.02
Z3: difference 16 bit 0-65535 ($FFFF) BM00.05+ BM00.04

HB: high byte
HB LB LB:

+ Z1
HB LB

BM00.03 + BM00.02 Z2 Z3 BM00.05 + BM00.04

Binary

subtractor

Program
LD BM00.00 ;Z1 minuend
SUBD BM00.02 ;Z2 subtrahend
=D BM00.04 ;Z3 difference

Examples

135

6.15.6 8-bit BCD subtractor
Z1: minuend 8 bit 0-99 BM00.00
Z2: subtrahend 8 bit 0-99 BM00.01
Z3: difference 8 bit 0-99 BM00.02

BM00 00 Z1

BM00.01 Z2 Z3 BM00.02

8 bit
BCD
subtractor

Programm

 ****** BCD correction ***************************

L BM00.00 ;Z1 minuend
A 15
= LBM00.00 ;1st decade
L BM00.01 ;Z2 subtrahend
A 15 ;1st decade
CMP LBM00.00 BCD correction required?
JP<= SUBTR ;jump if not
L BM00.01 ;if so:
ADD 6 ;load correction value
= BM00.01

 ******Subtraction******************************

SUBTR L BM00.00 ;Z1 minuend
SUB BM00.01 ;Z1 subtrahend
= BM00.02 ;Z3 difference

Examples

136

6.15.7 Binary 8-bit multiplicator
Z1: multiplicand 8 bit 0-255 ($FF) BM00.00
Z2: multiplicator 8 bit 0-255 ($FF) BM00.01

HB LB
Z3: product 16 bit 0-65025 ($FI01) BM00.03+ BM00.02

HB: high byte
LB: low byte

BM00 00 Z1
HB LB

 BM00.01 Z2 Z3 BM00.03 +BM00.02

Binary
8/16-bit
multiplicator

Program
L BM00.00 ;Z1 multiplicand
MUL BM00.01 ;Z2 multiplicator
=D BM00.02 ;Z3 product

Examples

137

6.15.8 Binary 16-bit multiplicator
HB LB

Z1: multiplicand 16 bit 0-65535 ($FFFF) BM00.01+ BM00.00
Z2: multiplicator 16 bit 0-65535 ($FFFF) BM00.03+ BM00.02
Z3: product 16 bit 0-65535 ($FFFF) BM00.05+ BM00.04

HB: high byte
HB LB LB:

+ Z1
HB LB

BM00.03 + BM00.02 Z2 Z3 BM00.05 + BM00.04

Binary

multiplicator

Program
LD BM00.00 ;Z1 multiplicand
MULD BM00.02 ;Z2 multiplicator
=D BM00.04 ;Z3 product

Examples

138

6.15.9 Binary 8-bit divider
Z1: dividend 8 bit BM00.00
Z2: divisor 8 bit BM00.01
Z3: quotient 8 bit BM00.02

BM00 00 Z1

BM00.01 Z2 Z3 BM00.02

Binary

divider

Programm
L BM00.00 ;Z1 dividend
DIV BM00.01 ;Z2 divisor
= BM00.02 ;Z3 quotient

Examples

139

6.15.10 Binary 16-bit divider
HB LB

Z1: dividend 16 bit 0-65535 ($FFFF) BM00.01+ BM00.00
Z2: divisor 16 bit 0-65535 ($FFFF) BM00.03+ BM00.02
Z3: quotient 16 bit 0-65535 ($FFFF) BM00.05+ BM00.04

HB: high byte
HB LB LB:

+ Z1
HB LB

BM00.03 + BM00.02 Z2 Z3 BM00.05 + BM00.04

Binary

divider

Programm
LD BM00.00 ;Z1 dividend
DIVD BM00.02 ;Z2 divisor
=D BM00.04 ;Z3 quotient

The resulting quotient is an integer number. Proceed as follows to find the rest:

LD BM00.04 ;Z3 quotient
MULD BM00.02 ;Z2 divisor
=D LBM00.00 ;Z3(integer!) *Z2
LD BM00.00 ;Z1 dividend
SUBD LBM00.00
=D BM00.06 ;rest

Examples

140

6.16 Code converters

6.16.1 BCD-to-binary converter, 8-bit
BCD: 8-bit 0-99 BM00.00
Binary: 8-bit 0-99($63) BM00.01

BM00 00 BCD Bin BM00 01

8 bit
BCD-to-binary
converter

Program
L BM00.00 ;load BCD value
LSR ;shift
LSR ;tens
LSR ;to
LSR ;ones
MUL 10 ;multiply
= BM00.01 ;store
L BM00.00 ;load BCD value
A 15 ;extract tens
ADD BM00.01 ;add binary tens
= BM00.01 ;store binary value

Examples

141

6.16.2 Binary-to-BCD converter, 8-bit
Binary: 8-bit 0-99($63) BM00.00
BCD: 8-bit 0-99 BM00.01

Bin BCD

binary-to-BCD
converter

Program
L BM00.00 ;load binary value
DIV 10 ;find and
= LBM00.00 ;store tens
MUL 10 ;calculate and register
= LBM00.01 ;integer amount of tens
L BM00.00 ;
SUB LBM00.01 ;find and
= LBM00.01 ;store tens
L LBM00.00 ;shift
LSL ;tens
LSL ;into the upper
LSL ;nibble
LSL ;
O LBM00.01 ;compress and
= BM00.01 ;output BCD value

Examples

142

6.16.3 BCD-to binary converter, 16 bit
HB LB

BCD: 16 bit 0-9999 BM00.01+ BM00.00
Binary: 16 bit 0-9999($270F) BM00.03+ BM00.02

HB:
LB: low byte

HB LB HB LB
+ Bin BCD +

BCD-to-binary
converter

Examples

143

Program
CLR BM00.03 ;clear because of LD BM00.02
CLR LBM00.03 ;clear because of LD LBM00.02
L BM00.00 ;separate ones decade
A 15
= BM00.02 ;binary ones
L BM00.00 ;separate tens decade
LSR
LSR
LSR
LSL ;binary tens
MUL 10
ADD BM00.02
= BM00.02 ;ones + tens
L BM00.01 ;separate hundreds decade
A 15
= LBM00.02 ;binary hundreds
LD LBM00.02 ;same as word
MULD 100
ADDD BM00.02
=D BM00.02 ;ones + tens + hundreds
L BM00.01 ;separate thousands decade
LSR
LSR
LSR
LSR
= LBM00.02 ;binary thousands
LD LBM00.02 ;same as word
MULD 1000
ADDD BM00.02
=D BM00.02 ;complete binary value

Examples

144

6.16.4 Binary-to-BCD converter, 16 bit
HB LB

Binary: 16 bit 0-9999($270F) BM00.01+ BM00.00
BCD: 16 bit 0-9999 BM00.03+ BM00.02

HB:
LB: low byte

HB LB HB LB
+ Bin BCD +

binary to-BCD
converter

Examples

145

Program
CLR BM00.02 ;set to zero
CLR BM00.03 ;“

THOU1 LD BM00.00 ;load binary value
CMPD 1000
JP< THOU2 ;smaller than one-thousand ?
SUBD 1000 ;if yes: subtract 1000
=D BM00.00
INC BM00.03 ;count subtraction steps
JP THOU1 ;check again

THOU2 L BM00.03 ;if not: shift thousands
LSL ;to the upper
LSL ;nibble of the
LSL ;BCD output’s
LSL ;high byte
= BM00.03 ;prepare high byte

HUND LD BM00.00 ;remaining binary value (no thousands)
CMPD 100
JP< TEN1 ;smaller than one-hundred?
SUBD 100 ; if yes: subtract 100
=D BM00.00
INC BM00.03 ;count subtraction steps (in lower

;nibble of BCD output’s high byte)
JP HUND ;check again

TEN1 L BM00.00 ;rem. binary value (no hundreds either)
V 10
JP< TEN2 ;smaller than ten ?
SUB 10 ;if yes: subtract 10
= BM00.00
INC BM00.02 ;count subtraction steps
JP TEN1 ;check again

TEN2 L BM00.02 ;if not: shift tens
LSL ;into the upper
LSL ;nibble of the
LSL ;BCD output’s
LSL ;low byte
ADD BM00.00 ;remaining ones into lower nibble
= BM00.02 ;output low byte

Examples

146

6.17 Modular programming

Task
Sets of 12 pieces each are to be transported on a con-
veyor belt. The belt drive is operated by start and stop
keys. The belt is stopped after every twelfth piece. Before
leaving the belt, each piece triggers an impulse via an in-
itiator. The impulse is used for counting.

A binary display is to show:
Ø while the belt is moving:
the current number in the set (0...12)
Ø else:
the sum total of all parts transported already (0...65536)

You should be able to reset the counter via the Clear keys.

6.17.1 Part task definition
The part tasks are to be defined under technological as-
pects and aim for clearly arranged modules that can be
used several times. Our example only indicates an under-
standing of the modules’ interaction.

Examples

147

6.17.1.1 Module structure

ORG ONOFF(1)

JPP ONOFF L STARTER
S IOMARKER
L STOP
ON READY
O DONE
R IOMARKER
L IOMARKER
= MOTOR

COUNTER(2) SUM(5)

JPP COUNTER L C00.00 LD C00.00
O STOP ADDD BM00.00
= PP00.00 =D BM00.00
L PP00.00
JPCP SUM
L IOMARKER
= C00:12:F
L CIMP

NEW(6)

=C C00.00 LD 0
L CLEAR =D BM00.00
JPCP NEW

DISCUR(3)
L MOTOR
JPCP DISCUR LD C00.00

=D BM00.02
JPP DISPLAY DISPLAY(7)

LD BM00.00DISSUM(4)

C16T1 BIT1
LN MOTOR LD BM00.00
JPCP DISSUM =D BM00.02

JPP DISPLAY

Examples

148

6.17.1.2 Documentation

======== KUBES ===

 Symbol table

Project : E556D Network :
 created : Jul 20 1998 09:53
User : Virginia Lehmann changed : Jul 20 1998 09:53
Comment: Example "Modular programming"
==
Address: Symbol: Comment: Supplement:
I00.00 START belt drive on X10/1-1
I00.01 STOP belt drive off X10/1-2
I00.02 READY system ready X10/2-1
I00.03 CIMP counting pulse of initiator X10/2-2
I00.04 CLEAR clear sum X10/2-3
O00.00 MOTOR motor protection
O00.01 BIT1 binary display
O00.02 BIT2 binary display
O00.03 BIT3 binary display
O00.04 BIT4 binary display
O00.05 BIT5 binary display
O00.06 BIT6 binary display
O00.07 BIT7 binary display
O00.08 BIT8 binary display
O00.09 BIT9 binary display
O00.10 BIT10 binary display
O00.11 BIT11 binary display
O00.12 BIT12 binary display
O00.13 BIT13 binare anzeige
O00.14 BIT14 binary display
O00.15 BIT15 binary display
O01.00 BIT16 binary display
M00.00 IOMARKER „motor on/off“ marker
BM00.00 BM00_00 low byte counting register
BM00.01 BM00_01 high byte counting register
BM00.02 BM00_02 high byte display register
BM00.03 BM00_03 low byte display register

C00.00 COUNTER up-counter
PP00.00 DONE set count complete

Examples

149

======== KUBES ===

 Project structure

Project : E556D Network :
 created : Jul 20 1998 09:53
User : Virginia Lehmann changed : Jul 20 1998 09:53
Comment: Example “Module programming"
==
ORG.ORG/1
|
*------>ONOFF.PRO/1
|
*------>COUNTER.PRO/2
| |
| *------>SUM.PRO/5
| |
| *------>NEW.PRO/6
|
*------>DISCUR.PRO/3
| |
| *------>DISPLAY.PRO/7
|
*------>DISSUM.PRO/4
 |
 *------>DISPLAY.PRO/7

======== KUBES ===

 Organisation module IL

Project : E556D Network :
Module : ORG No.: 1 created : Jul 20 1998 09:53
User : Virginia Lehmann changed : Jul 20 1998 10:27
==

 1: JPP ONOFF 1
 2: JPP COUNTER 2
 3: L MOTOR O00.00 ; (motor protection)
 4: JPCP DISCUR 3
 5: LN MOTOR O00.00 ; (motor protection)
 6: JPCP DISSUM 4
 7:

Examples

150

======== KUBES ===

 Program module IL

Project : E556D Network :
Module : ONOFF No.: 1 created : Jul 20 1998 10:40
User : Virginia Lehmann changed : Jul 20 1998 10:40
Comment: ONOFF
 ==
 1: L START I00.00 ; (belt drive on)
 2: S IOMARKER M00.00 ; („motor on/off“ marker)
 3: L STOP I00.01 ; (belt drive off)
 4: ON READY I00.02 ; (system ready)
 5: O DONE PP00.00 ; (set count complete)
 6: R IOMARKER M00.00 ; („motor on/off“ marker)
 7: L IOMARKER M00.00 ; („motor on/off“ marker)
 8: = MOTOR O00.00 ; (motor protection)
 9:

======== KUBES ===

 Program module IL

Project : E556D Network :
Module : COUNTER No.: 2 created : Jul 20 1998 10:42
User : Virginia Lehmann changed : Jul 20 1998 10:42
Comment: COUNTER
==

 1: L COUNTER C00.00 ; (up-counter)
 2: O STOP I00.01 ; (belt drive off)
 3: = DONE PP00.00 ; (set count complete)
 4: L DONE PP00.00 ; (set count complete)
 5: JPCP SUM 5
 6: L IOMARKER M00.00 ; („motor on/off“ marker)
 7: = COUNTER:12:F C00.00 ; (up-counter)
 8: L CIMP I00.03 ; (counting pulse of initiator)
 9: =C COUNTER C00.00 ; (up-counter)
 10: L CLEAR I00.04 ; (clear sum)
 11: JPCP NEW 6
 12:

======== KUBES ===

 Program module IL

Project : E556D Network :
Module : DISCUR No.: 3 created : Jul 20 1998 10:45
User : Virginia Lehmann changed : Jul 20 1998 10:45
Comment: DISCUR
==

 1: LD COUNTER C00.00 ; (up-counter)
 2: =D BM00_02 BM00.02 ; (high byte display register)
 3: JPP DISPLAY 7
 4:

Examples

151

======== KUBES ===

 Program module IL

Project : E556D Network :
Module : DISSUM No.: 4 created : Jul 20 1998 10:48
User : Virginia Lehmann changed : Jul 20 1998 10:48
Comment: DISSUM
==

 1: LD BM00_00 BM00.00 ; (low byte counting register)
 2: =D BM00_02 BM00.02 ; (high byte display register)
 3: JPP DISPLAY 7
 4:

======== KUBES ===

 Program module IL

Project : E556D Network :
Module : SUM No.: 5 created : Jul 20 1998 10:49
User : Virginia Lehmann changed : Jul 20 1998 10:49
Comment: SUM
==

 1: LD COUNTER C00.00 ; (up-counter)
 2: ADD BM00_00 BM00.00 ; (low byte counting register)
 3: =D BM00_00 BM00.00 ; (low byte counting register)
======== KUBES ===

 Program module IL

Project : E556D Network :
Module : NEW No.: 6 created : Jul 20 1998 10:50
User : Virginia Lehmann changed : Jul 20 1998 10:50
Comment: NEW
==

 1: LD 0
 2: =D BM00_00 BM00.00 ; (low byte counting register)
 3:

======== KUBES ===

 Program module IL

Project : E556D Network :
Module : DISPLAY No.: 7 created : Jul 20 1998 10:50
User : Virginia Lehmann changed : Jul 20 1998 10:50
Comment: DISPLAY
==

 1: LD BM00_00 BM00.00 ; (low byte counting register)
 2: C16T1 BIT1 O00.01 ; (binary display)
 3:

Examples

152

Troubleshooting

153

7 Troubleshooting

7.1 “Failure“ LED flashing?
à Short circuit

Ø Indication:
“failure“ LED: flashing red light

Ø Cause:
Short circuit or overload at an output.

Ø Reaction:
All outputs are disabled.

Ø Corrective action:
- Find short circuit (e.g. by disconnecting all outputs
and reconnecting them one by one).
– Remove short circuit
– Restart PLC

7.2 LEDs „run/stop“ and „failure“ light up red
à Undervoltage

Ø Indication:
„run/stop“ LED: permanent red light
„failure“ LED: permanent red light

Ø Cause
The system supply voltage falls below a threshold so-
mewhere between 16 and19 V.

Ø Reaction:
The user program stops, all non-remanent operands
and outputs =0.

Ø Corrective action:
- Switch supply voltage off and back on again.

Troubleshooting

154

7.3 No online connection to KUBES?
The following error message may be displayed when you
are trying to go online with the PLC (via V.24):

Fig. 14: V.24-synchronisation error message

If it does, please check whether:
Ø the PLC is switched on,
Ø the programming cable is connected to the PLC,
Ø the programming cable is properly connected to the

PC (check port! the standard port is COM1),
Ø the cable is a genuine KUBES programming cable

(part no.: 657.151.03).
If all of the above points are okay, but the PLC still does not
react, it could be that the PLC no longer accesses the port.
Ø Switch the supply voltage off and back on again.
In some cases, the PLC still does not react. The following
causes are possible:
Ø PLC defective
Ø program error (CPU no longer accepts KUBES’ online

message)
Ø wrong V.24 parameter settings

Troubleshooting

155

Ultimate chance of correcting the fault
Ø Switch off all supply voltages, i.e. both the system

supply and the supply of the outputs (à 3.4).
Ø Take off the lid of the housing

The lid snaps into the device’s side walls. Carefully
push out one side wall to unlock the lid so that you
can take it off.

Ø Pull off the jumper located above the V.24 interface
connector.

Ø Switch on the system supply.
è the PLC indicates “stop” (à 3.8). (Repeat the
procedure if not.).

Ø Choose “Online V.24” in KUBES.
Hand in the PLC for repairs if there’s still no online
connection.

Ø Choose “Delete program”.
Ø Transmit a new and unbugged program.
Ø Switch the power supply off.
Ø Put the jumper back in.
Ø Close the lid.
Ø Switch all supply voltages back on.

Troubleshooting

156

Data summary

157

8 Data summary

8.1 Technical data

8.1.1 Design
Type open
Dimensions (L x W x H) depend on model variant

Eco Control 667E 8/8 152 x 90 x 73 mm
Eco Control 667E 16/16 152 x 90 x 73 mm
Eco Control 667E 32/32 268 x 90 x 73 mm

Installation on carrier rail
Weight depends on model variant

Eco Control 667E 8/8 c. 570 g
Eco Control 667E 16/16 c. 580 g
Eco Control 667E 32/32 c. 970 g

Admissible ambient conditions
Storage temperature -25...+70 °C
Ambient temp. during operation 0...55 °C
Relative humidity 50...95%

8.1.2 System power supply
Voltage 24 V DC -20% / +25%
Power consumption 100 mA
Connectors clamp-screw term. up to 2.5mm²

L1+ + 24 V DC
L1- 0 V

Appendix

158

8.1.3 System status indicators
Type light emitting diodes, class 1

(in acc. with EN 60825-1)
Run/stop (duo-LED, green/red) program running/stopped
Failure (LED, red) failure indicator

8.1.4 Serial interface
Type V.24 (RS 232)
Connector female, 9-pin D-Sub
Function programming and

data communication
Maximum baud rate 9.6 kbit/s
Transfer format 8 data bits, 1 start bit,

1 stop bit

8.1.5 Programming
Programming device PC with MSWindows
Programming software KUBES (version 5.30 or higher)
Programming cable 657.151.03

Data summary

159

8.1.6 Digital inputs
Provided via internal process image
Amount depends on model variant

Eco Control 667E 8/8 8
Eco Control 667E 16/16 16
Eco Control 667E 32/32 32

Type (in acc. with IEC 1131) 1
Galvanic separation none
Indicators light emitting diodes, class 1 (in

acc. with EN 60825-1)
Colour green
Tapping point in input circuit
Signal state 1: LED on

2: LED off
Addressing depends on model variant

Eco Control 667E 8/8 I00.00...07
Eco Control 667E 16/16 I00.00...15
Eco Control 667E 16/16 I00.00...15, I01.00...15

Input voltage 24 V DC -20%/+25%
(inc. residual ripple)

Surge immunity ≤ 40 V DC (≤ 30 min)
Signal detection

Logical 0 ≤ 5 V DC
Logical 1 ≥ 15 V DC

Power consumption/input max. 10 mA

Appendix

160

8.1.7 Digital outputs
Control via internal process image
Amount depends on model variant

Eco Control 667E 8/8 8
Eco Control 667E 16/16 16
Eco Control 667E 32/32 32

Type semiconductor
Indicators light emitting diodes, class 1 (in

acc. with EN 60825-1)
Colour red
Tapping point in the load circuit
Signal state 1: LED on

2: LED off
Addressing depends on model variant

Eco Control 667E 8/8 O00.00...07
Eco Control 667E 16/16 O00.00...15
Eco Control 667E 32/32 O00.00...15, O01.00...15

Output supply 24 V DC -20%/+25%
Connectors clamp-screw term. up to 2.5mm²

L1+ + 24 V DC
L1- 0 V

Output current/output max. 0.5 A
Short-circuit protection yes

Data summary

161

8.1.8 Processor and memory
Microprocessor 80C535
Memory

Operating system Flash-EPROM
User program NV-RAM, 32 kbyte
Data, remanent NV-RAM, 8 kbyte
Data, non-remanent S-RAM, 24 kbyte

8.1.9 Operands
Programmable timers remanent if required

Amount/range 32/10 ms ... 65535 s
Programmable counters remanent if required

Amount/range 32/0...65535
Inputs and outputs à 8.1.4 und 0
Bit markers 1320, inc. 512 remanent
Byte markers 2816, inc. 2304 remanent

Appendix

162

8.2 Order specifications

8.2.1 Controllers
Product Part number
Eco Control 667E 8/8 upon request

8 digital inputs, 8 digital outputs
Eco Control 667E 16/16 667.752.00

16 digital inputs, 16 digital outputs
Eco Control 667E 32/32 667.704.00

32 digital inputs, 32 digital outputs

8.2.2 Accessories
Product Part number
Simulator plug for 8 digital inputs 667.155.50
Starter kit Eco Control 667E, German, containing: 667.502.00

KUBES light (programming software just for Eco
Control 667), programming cable 657.151.03,
instruction manuals E 327 D and E 556 D.
à Available as from week 44/98

Starter kit Eco Control 667E, English, containing: 667.502.11
KUBES light (programming software just for Eco
Control 667), programming cable 657.151.03,
instruction manuals E 327 GB and E 556 GB.
à Available as from week 51/98

Index

163

9 Index
addressing 49
AND 91
AND marker 101
arithmetic functions 130
arithmetical operation commands

55
cable routing and wiring 19
code converters 140
com1 30
commands

description 47
summary 50

communication modules 73
comparison commands 56
copy commands 60, 127
data 33

read 85
summary 157
write 86

data (blocks)
copy 83

design 24
digital inputs 28
digital outputs 29
dirt 20
earthing 26
Eco Control 667E 16/16 23

Eco Control 667E 32/32 24
Eco Control 667E 8/8 22
electromagnetic compatibility 17
electromagnetic interference 20
examples 91
exclusive OR 94
falling delay 116
Hardware 21
impact and vibration 20
impulse relay 104
incrementation commands 56
inductive actuators 20
installation 15, 25

notes 18
interference emission 18
intermediate code addresses 84
jump commands 58
KUBES module 66
KUBES module libraries 70
KUBES modules 69
location of installation 19
logical operation commands 51
maintenance 16
memory distribution 31
memory function

mainly resetting 96
mainly setting 96

Appendix

164

model variants 21
modular programming 146
module hierarchy 67
modules

programming 65
NAND 93
negation

at input 92
at output 92

NOR 93
notes 14
NV-RAM 33
On-chip RAM 31
operand ranges 43
operands

set functions 46
summary 45
types 48

operating system 31
operative approach 35
OR 91
OR marker 100
order specifications 162
organisation module 66
overload 29
PLC cycle 36
power supply 27, 29

outputs 29
system 27

process image 28, 37
processor 31
program module 66
programmable clock 120
programmable counter commands

62
programmable pulse commands

62
programmable timer commands

62
project planning 15
raising delay 115
RD_OFFS 85
receive single character 77
Reliability 13
resistance to interference 17
retrievability 32
safety 15
seal-in circuit 95
send single character 76
send strings 78
sequential process 123
servicing 16
shift commands 56
shift register 125
short circuit 29, 153
Software 35
software counters 121
SST667IN 78
target group 13

Index

165

technical data 157
temperature 19
troubleshooting 153
undervoltage 153
user program 31

V24667IE 77
V24667IS 76
wiping pulse 107
WR_OFFS 86

Appendix

166

10

	Table of contents
	1 Introduction
	1.1 Features
	1.2 Successor to Pico/Compact Control KUAX 667
	2 Reliability, safety
	2.1 Target group
	2.2 Reliability
	2.3 Notes
	2.3.1 Danger
	2.3.2 Dangers caused by high contact voltage
	2.3.3 Important information / cross reference
	2.4 Safety
	2.4.1 Observe during planning and installation
	2.4.2 Observe during maintenance or servicing
	2.5 Electromagnetic compatibility
	2.5.1 Definition
	2.5.2 Resistance to interference
	2.5.3 Interference emission
	2.5.4 General notes on installation
	2.5.5 Protection against external electrical
	2.5.6 Cable routing and wiring
	2.5.7 Location of installation
	2.5.8 Particular sources of interference
	3 Hardware
	3.1 Model variants
	3.2 Top view
	3.2.1 Eco Control 667E 8/8
	3.2.2 Eco Control 667E 16/16
	3.2.3 Eco Control 667E 32/32
	3.3 Mechanical design
	3.3.1 Installation
	3.3.2 Earthing
	3.4 Power supply
	3.4.1 System power supply
	3.5 Digital inputs
	3.6 Digital outputs
	3.7 Serial interface COM1
	3.8 Light emitting diodes
	3.9 Processor
	3.9.1 On-chip RAM
	3.10 Memory distribution
	3.10.1 Operating system
	3.10.2 User program
	3.10.2.1 Disable retrievability = increase capacity
	3.10.3 Data memory
	3.10.4 NV-RAM: special features
	3.10.5 On-chip RAM: special features
	4 Software
	4.1 Operative approach
	4.1.1 PLC cycle
	4.1.1.1 The 4 phases of a PLC cycle
	4.1.1.2 Minimum cycle time
	4.1.1.3 Influence of timer interrupts on the cycle time
	4.1.1.3.1 Extension of the cyle time
	4.1.1.4 Influence of communication on the cycle time
	4.1.1.5 Changing the program in run mode, transmitting
	4.1.1.6 Restarting the controller after changes in Stop/
	4.1.1.7 Programming
	4.2 Operand ranges
	4.2.1 Definitions
	4.2.2 Summary of operands
	4.2.3 Set operand functions
	4.2.3.1 Operands reserved for monitor functions
	4.2.3.2 Operands reserved for KUBES modules
	4.3 Description of commands
	4.4 Types of operands
	4.4.1 Addressing
	4.4.2 Summary of commands
	4.4.2.1 Logical operation commands
	4.4.2.2 Assignments and store commands
	4.4.2.3 Arithmetical operation commands
	4.4.2.4 Comparison,- shift- and incrementation commands
	4.4.2.5 Jump commands
	4.4.2.6 Copy commands
	4.4.2.7 Programmable pulses , timers and counters
	4.5 Programming modules
	4.5.1 Organisation module
	4.5.2 Program module
	4.5.3 KUBES module
	4.5.4 Module hierarchy
	5 KUBES modules
	5.1 KUBES module libraries
	5.1.1 Contents of the KUBES module library
	5.1.2 Loading KUBES modules
	5.2 Communication modules
	5.2.1 Reserved operands
	5.2.2 V.24 mode settings
	5.2.3 Sending single characters (V24667IS)
	5.2.3.1 Program structure
	5.2.4 Receiving single characters (V24667IE)
	5.2.4.1 Program structure
	5.2.5 Sending strings (SST667IN)
	5.2.5.1 Program structure
	5.2.6 Example program “serial communication“
	5.3 Copying data (blocks)
	5.3.1 Reserved operands
	5.3.2 Operands’ intermediate code addresses
	5.3.3 Reading data (RD_OFFS)
	5.3.3.1 Program structure
	5.3.4 Writing data (WR_OFFS)
	5.3.4.1 Program structure
	5.3.5 Example program “copy data block“
	6 Examples
	6.1 Basic functions
	6.1.1 AND
	6.1.2 OR
	6.1.3 Negated input
	6.1.4 Negated output
	6.1.5 NAND
	6.1.6 NOR
	6.1.7 XO: exclusive OR (antivalence)
	6.1.8 XON: exclusive NOR (equivalence)
	6.1.9 Seal-in circuit
	6.2 Memory functions
	6.2.1 Mainly resetting
	6.2.2 Mainly setting
	6.3 Switching circuits
	6.3.1 OR-AND circuit
	6.3.2 Parallel circuit to output
	6.3.3 Network with one output
	6.3.4 Network with outputs and markers
	6.4 Special markers used as AND/OR marker
	6.4.1 Network with OR marker
	6.4.2 Network with AND marker
	6.4.3 Network with multiple use of the OR marker
	6.5 Circuit conversion
	6.6 Special-purpose circuits
	6.6.1 Impulse relay
	6.6.2 Reversing circuit (reversing starter) with
	6.6.3 Reversing circuit (reversing starter) without
	6.7 Edge evaluation (wiping pulse)
	6.7.1 Programmable wiping pulse at rising edge
	6.7.2 Programmable wiping pulse at falling edge
	6.7.3 Wiping pulse at positive signal
	6.7.4 Wiping pulse at negative signal
	6.8 Software timers
	6.8.1 Mnemonics
	6.8.1.1 Syntax examples
	6.8.2 Impulse at start-up
	6.8.3 Impulse of constant duration
	6.8.4 Raising delay
	6.8.5 Falling delay
	6.8.6 Pulse generator with wiping pulse output
	6.8.7 Flash generator with one timer
	6.8.8 Flash generator with two timers
	6.9 Programmable clock
	6.10 Software counters
	6.10.1 Mnemonics
	6.10.1.1 Syntax examples
	6.10.2 Up-counter to 12
	6.11 Programming a sequential process
	6.12 Register circuits
	6.12.1 1-bit shift register
	6.12.2 8-bit shift register
	6.13 Copy commands (bit-to-byte transfer)
	6.13.1 Copy eight 1-bit operands to one byte
	6.13.2 Copy one byte to eight 1-bit operands
	6.13.3 Copy sixteen 1-bit operands to two bytes
	6.13.4 Copy two byte to sixteen 1-bit operands
	6.14 Comparator circuits
	6.14.1 8-bit comparator
	6.14.2 16-bit comparator
	6.15 Arithmetic functions
	6.15.1 Binary 8-bit adder
	6.15.2 Binary 16-bit adder
	6.15.3 8-bit BCD adder
	6.15.4 Binary 8-bit subtractor
	6.15.5 Binary 16-bit subtractor
	6.15.6 8-bit BCD subtractor
	6.15.7 Binary 8-bit multiplicator
	6.15.8 Binary 16-bit multiplicator
	6.15.9 Binary 8-bit divider
	6.15.10 Binary 16-bit divider
	6.16 Code converters
	6.16.1 BCD-to-binary converter, 8-bit
	6.16.2 Binary-to-BCD converter, 8-bit
	6.16.3 BCD-to binary converter, 16 bit
	6.16.4 Binary-to-BCD converter, 16 bit
	6.17 Modular programming
	6.17.1 Part task definition
	6.17.1.1 Module structure
	6.17.1.2 Documentation
	7 Troubleshooting
	7.1 “Failure“ LED flashing?
	7.2 LEDs „run/stop“ and „failure“ light up red
	7.3 No online connection to KUBES?
	8 Data summary
	8.1 Technical data
	8.1.1 Design
	8.1.2 System power supply
	8.1.3 System status indicators
	8.1.4 Serial interface
	8.1.5 Programming
	8.1.6 Digital inputs
	8.1.7 Digital outputs
	8.1.8 Processor and memory
	8.1.9 Operands
	8.2 Order specifications
	8.2.1 Controllers
	8.2.2 Accessories
	9 Index

